Ekaterina TOMILINA

supervised by Gildas MAZO and Florence JAFFRÉZIC

November 25th, 2025

Table of Contents

- Introduction
- Relevance networks
 - State of the art
 - The model
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Table of Contents

- Introduction
- Relevance networks
 - State of the art
 - The mode
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Introduction

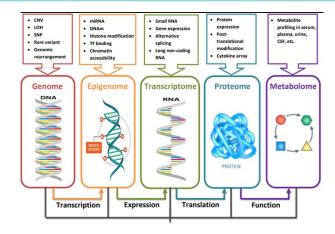


Figure: Main omics levels

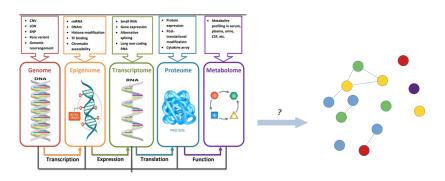


Figure: How to understand the underlying regulation network?

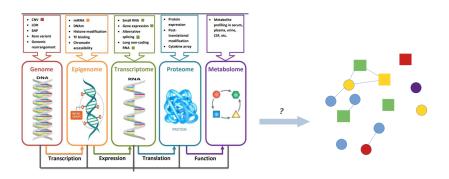


Figure: How to understand the underlying regulation network?

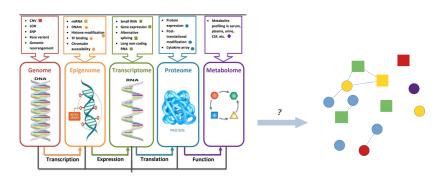


Figure: How to understand the underlying regulation network?

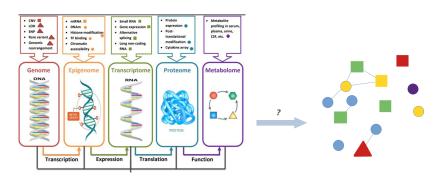


Figure: How to understand the underlying regulation network?

Source: Momeni et al., A survey on single and multi omics data mining methods in cancer data classification, Journal of Biomedical Informatics, 2020

 \rightarrow Mixed variables

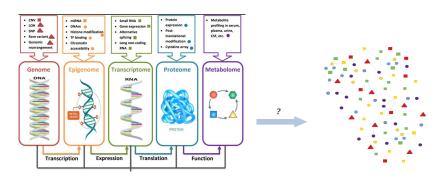


Figure: How to understand the underlying regulation network?

Source: Momeni et al., A survey on single and multi omics data mining methods in cancer data classification, Journal of Biomedical Informatics, 2020

 \rightarrow Mixed variables, high dimension d > n

Introduction

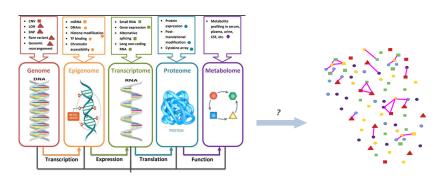


Figure: How to understand the underlying regulation network?

Source: Momeni et al., A survey on single and multi omics data mining methods in cancer data classification, Journal of Biomedical Informatics, 2020

 \rightarrow Mixed variables, high dimension d > n: what kind of links?

◆ロト ◆個 ト ◆意 ト ◆ 恵 ト 恵 目 り へ ○

Table of Contents

- Introduction
- Relevance networks
 - State of the art
 - The model
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Table of Contents

- Introduction
- Relevance networks
 - State of the art
 - The model
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Association relationships between pairs of variables.

Correlation coefficients

- Correlation coefficients
 - Pearson's ρ^P :
 - ★ Eisen et al. (1998), discrete RNAseq
 - ★ Love et al. (2014), transformed RNAseq

- Correlation coefficients
 - Pearson's ρ^P :
 - ★ Eisen et al. (1998), discrete RNAseq
 - ★ Love et al. (2014), transformed RNAseq
 - ▶ Spearman's ρ^{S} : Langfelder & Horvath (2008), discrete RNAseq

- Correlation coefficients
 - Pearson's ρ^P :
 - ★ Eisen et al. (1998), discrete RNAseq
 - ★ Love et al. (2014), transformed RNAseq
 - Spearman's ρ^S : Langfelder & Horvath (2008), discrete RNAseq
 - \rightarrow do not handle non-monotonic relationships, nor discrete variables with few categories

- Correlation coefficients
 - ▶ Pearson's ρ^P :
 - ★ Eisen et al. (1998), discrete RNAseq
 - ★ Love et al. (2014), transformed RNAseq
 - Spearman's ρ^S : Langfelder & Horvath (2008), discrete RNAseq
 - \rightarrow do not handle non-monotonic relationships, nor discrete variables with few categories
- Mutual information

Association relationships between pairs of variables.

- Correlation coefficients
 - Pearson's ρ^P :
 - ★ Eisen et al. (1998), discrete RNAseq
 - ★ Love et al. (2014), transformed RNAseq
 - ▶ Spearman's ρ^{S} : Langfelder & Horvath (2008), discrete RNAseq
 - \rightarrow do not handle non-monotonic relationships, nor discrete variables with few categories
- Mutual information

Kullback-Leibler divergence between the joint density and the product of the marginals.

- Butte & Kohane (2000), "binned" RNAseq
- Margolin (2006), continuous RNAseq
- ► Gao et al. (2017), mixed data

Association relationships between pairs of variables.

Correlation coefficients

- ▶ Pearson's ρ^P :
 - * Eisen et al. (1998), discrete RNAseq
 - ★ Love et al. (2014), transformed RNAseq
- ▶ Spearman's ρ^{S} : Langfelder & Horvath (2008), discrete RNAseq
- \rightarrow do not handle non-monotonic relationships, nor discrete variables with few categories

Mutual information

Kullback-Leibler divergence between the joint density and the product of the marginals.

- Butte & Kohane (2000), "binned" RNAseq
- Margolin (2006), continuous RNAseq
- ► Gao et al. (2017), mixed data
- \rightarrow only positive values, tedious estimation

Thesis contributions

Multi-omics network inference

- Novel approach for simultaneous multi-omics integration.
- Application to a real-life INRAF data set.
- Availability on CRAN.

Gaussian copula model

- Interpretation of extreme parameter values for mixed variables.
- Mixed density and independence properties.
- Novel estimation approach of the correlation matrix.

Definition

Assume that $F(X_1,...,X_d) = C_{\Sigma}(F_1(x_1),...,F_d(x_d)).$

$$(X_1,...,X_d) \sim C_{\Sigma}(F_1(x_1),...,F_d(x_d))$$

 $\equiv \Phi_{\Sigma}(\Phi^{-1}(F_1(x_1)),...,\Phi^{-1}(F_d(x_d)))$

where Φ_{Σ} represents the CDF of $\mathcal{N}(0,\Sigma)$, Φ the CDF of $\mathcal{N}(0,1)$, and F_1,\ldots,F_d the marginal CDFs of X_1,\ldots,X_d .

Definition

Assume that $F(X_1,...,X_d) = C_{\Sigma}(F_1(x_1),...,F_d(x_d)).$

$$(X_1,...,X_d) \sim C_{\Sigma}(F_1(x_1),...,F_d(x_d))$$

 $\equiv \Phi_{\Sigma}(\Phi^{-1}(F_1(x_1)),...,\Phi^{-1}(F_d(x_d)))$

where Φ_{Σ} represents the CDF of $\mathcal{N}(0,\Sigma)$, Φ the CDF of $\mathcal{N}(0,1)$, and F_1,\ldots,F_d the marginal CDFs of X_1,\ldots,X_d .

This model is equivalent to d Gaussian $\mathcal{N}(0,\Sigma)$ vectors Z_1,\ldots,Z_d of \mathbb{R}^n , such that X_j is defined as $F_j^{\leftarrow}(\Phi(Z_j))$, where $F_j^{\leftarrow}(u)=\inf\{x:F_j(x)\geq u\}$.

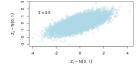
Definition

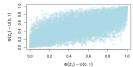
Assume that $F(X_1,...,X_d) = C_{\Sigma}(F_1(x_1),...,F_d(x_d)).$

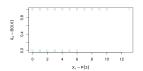
$$(X_1,...,X_d) \sim C_{\Sigma}(F_1(x_1),...,F_d(x_d))$$

$$\equiv \Phi_{\Sigma}(\Phi^{-1}(F_1(x_1)),...,\Phi^{-1}(F_d(x_d)))$$

where Φ_{Σ} represents the CDF of $\mathcal{N}(0,\Sigma)$ and Φ the CDF of $\mathcal{N}(0,1)$.







Thesis contributions

Multi-omics network inference

- Novel approach for simultaneous multi-omics integration.
- Application to a real-life INRAE data set.
- Availability on CRAN.

Gaussian copula model

- Interpretation of extreme parameter values for mixed variables.
- Mixed density and independence properties.
- Novel estimation approach of the correlation matrix.

Comonotonicity

Recall that X_j and X_k are said to be *comonotonic* if one of them is almost surely an increasing function of the other.

Proposition (Tomilina, Mazo, Jaffrézic, 2024)

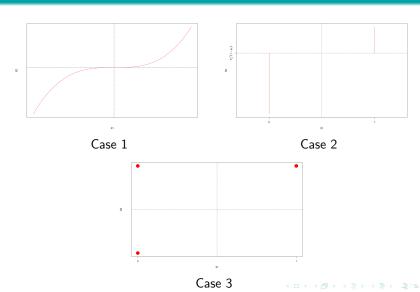
Suppose that one of the three cases below holds:

- **1** X_j and X_k are continuous;
- **2** $X_j \sim \operatorname{Ber}(p_j)$ and X_k is continuous;
- 3 $X_j \sim \operatorname{Ber}(p_j)$, $X_k \sim \operatorname{Ber}(p_k)$, $p_j \leq p_k$ and $p_j + p_k > 1$.

Then

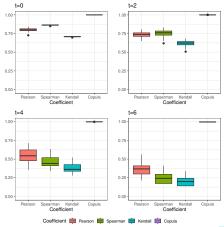
$$\Sigma_{jk} = 1 \text{ iff } \left\{ egin{array}{ll} X_j \text{ and } X_k \text{ are comonotonic} & \mathsf{case} \ (1) \ ; \\ (X_j, \mathbf{1}_{\{X_k > F_k^{-1}(1-p_j)\}}) \text{ is comonotonic} & \mathsf{case} \ (2) \ ; \\ X_j \leq X_k & \mathsf{case} \ (3). \end{array}
ight.$$

Comonotonicity



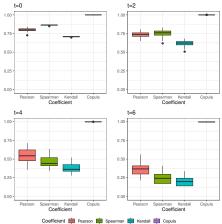
Comparison with other correlation coefficients

Example (case 2): N = 500 replications of n = 10000 observations, $X \sim \mathcal{N}(0,3), Y = \mathbb{1}_{\{X \geq t\}}$.



Comparison with other correlation coefficients

Example (case 2): N=500 replications of n=10000 observations, $X \sim \mathcal{N}(0,3), Y=\mathbb{1}_{\{X>t\}}$. Mesfioui et al. (2022): $|\rho^{S}| \leq \sqrt{3\rho(1-\rho)}$.



Countermonotonicity

 X_j and X_k are said to be *countermonotonic* if they are almost surely a decreasing function of each other.

Proposition (Tomilina, Mazo, Jaffrézic, 2024)

Suppose that one of the three cases below holds:

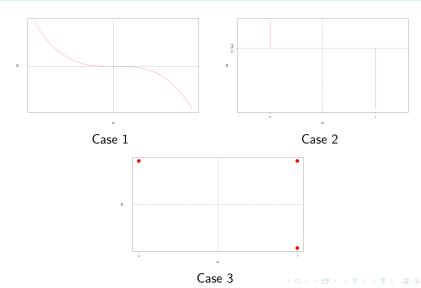
- **1** X_j and X_k are continuous;
- **2** $X_j \sim \operatorname{Ber}(p_j)$ and X_k is continuous;
- $3 X_j \sim \mathrm{Ber}(p_j), \ X_k \sim \mathrm{Ber}(p_k), \ p_j \leq p_k \ \text{and} \ p_j + p_k > 1.$

Then

$$\Sigma_{jk} = -1 \; \mathrm{iff} \; \left\{ egin{array}{ll} X_j \; \mathrm{and} \; X_k \; \mathrm{are \; countermonotonic} & \mathrm{case} \; (1) \; ; \ (X_j, \mathbf{1}_{\{X_k > F_k^{-1}(p_j)\}}) \; \mathrm{is \; countermonotonic} & \mathrm{case} \; (2) \; ; \ X_j + X_k \geq 1 \; \; \; \mathrm{case} \; (3). \end{array}
ight.$$

The model

Countermonotonicity



Thesis contributions

Multi-omics network inference

- Novel approach for simultaneous multi-omics integration.
- Application to a real-life INRAE data set.
- Availability on CRAN.

Gaussian copula model

- Interpretation of extreme parameter values for mixed variables.
- Mixed density and independence properties.
- Novel estimation approach of the correlation matrix.

Mixed density

Suppose that X_1, \ldots, X_p are continuous, X_{p+1}, \ldots, X_d are discrete, and $\Sigma_{jk} \in (-1,1)$ for any j,k. The corresponding density is given by 1:

$$f(x_{i1},...,x_{id},\Sigma) = \prod_{k=1}^{p} f_k(x_{ik}) \sum_{j_{p+1}=1}^{2} \cdots \sum_{j_d=1}^{2} (-1)^{j_{p+1}+...+j_d} \times C_{\Sigma}^{p}(F_1(x_{i1}),...,F_p(x_{ip}),u_{p+1,j_{p+1}},...,u_{d,j_d})$$

where $u_{j,1} = F_j(x_{ij})$, $u_{j,2} = F_j(x_{ij}-)$ and C_{Σ}^p represents the derivative of C_{Σ} depending on the p continuous variables.

¹Song, P., An Introduction to Copulas, 2007

Independence encoding

Proposition (Tomilina, Mazo, Jaffrézic, 2024)

For any X_1, \ldots, X_d , let (G_1, \ldots, G_k) be a partition of $\{1, \ldots, d\}$, and $\forall i = 1, \dots, k, X_{G_i} = (X_i : j \in G_i)$. Then, X_{G_1}, \dots, X_{G_k} are mutually independent IFF Σ is a block-wise matrix as below:

$$\Sigma = egin{pmatrix} \Sigma_1 & 0 & \dots & 0 \\ 0 & \Sigma_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \Sigma_k \end{pmatrix}$$

where each Σ_i is a $s_i \times s_i$ block such that $\sum_{i=1}^k s_i = p$ and where $s_i = \#G_i$.

Independence encoding

Proposition (Tomilina, Mazo, Jaffrézic, 2024)

For any X_1, \ldots, X_d , let (G_1, \ldots, G_k) be a partition of $\{1, \ldots d\}$, and $\forall i = 1, \ldots, k$, $X_{G_i} = (X_j : j \in G_i)$. Then, X_{G_1}, \ldots, X_{G_k} are mutually independent IFF Σ is a block-wise matrix as below:

$$\Sigma = \begin{pmatrix} \Sigma_1 & 0 & \dots & 0 \\ 0 & \Sigma_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \Sigma_k \end{pmatrix}$$

where each Σ_i is a $s_i \times s_i$ block such that $\sum_{i=1}^k s_i = p$ and where $s_i = \#G_i$.

→ **Contribution:** The independence property also holds in the presence of discrete variables.

How to estimate Σ ?

MCMC methods (Dobra and Mohammadi, 2018)

How to estimate Σ ?

- MCMC methods (Dobra and Mohammadi, 2018)
- Methods based on bridge functions, with a statistic \hat{r} computed on the observed data such that $\hat{r} = B(\hat{\Sigma})$.

- MCMC methods (Dobra and Mohammadi, 2018)
- Methods based on bridge functions, with a statistic \hat{r} computed on the observed data such that $\hat{r} = B(\hat{\Sigma})$.
 - Kruskal (1958): continuous data

$$\hat{r} = \hat{\tau}, \tau = B^{cc}(\Sigma) = \frac{2}{\pi} \arcsin(\Sigma)$$

- MCMC methods (Dobra and Mohammadi, 2018)
- Methods based on bridge functions, with a statistic \hat{r} computed on the observed data such that $\hat{r} = B(\hat{\Sigma})$.
 - Kruskal (1958): continuous data

$$\hat{r} = \hat{\tau}, \tau = B^{cc}(\Sigma) = \frac{2}{\pi} \arcsin(\Sigma)$$

► Fan et al. (2017): binary data

$$r = B^{bb}(\Sigma) = 2\{\Phi(\Delta_j, \Delta_k, \Sigma) - \Phi(\Delta_j)\Phi(\Delta_k)\}, \text{ where } \Delta_j = \Phi^{-1}(F_j(C_j))$$

- MCMC methods (Dobra and Mohammadi, 2018)
- Methods based on bridge functions, with a statistic \hat{r} computed on the observed data such that $\hat{r} = B(\hat{\Sigma})$.
 - Kruskal (1958): continuous data

$$\hat{r} = \hat{\tau}, \, \tau = B^{cc}(\Sigma) = \frac{2}{\pi} \arcsin(\Sigma)$$

Fan et al. (2017): binary data

$$r = B^{bb}(\Sigma) = 2\{\Phi(\Delta_j, \Delta_k, \Sigma) - \Phi(\Delta_j)\Phi(\Delta_k)\}, \text{ where } \Delta_j = \Phi^{-1}(F_j(C_j))$$

 \triangleright Zhang et al. (2021): multinomial data of L and M categories

$$r = B^{dd}(\Sigma) = 2\left\{\sum_{j=1}^{L} \sum_{m=1}^{M} \Phi(\Delta_{jj}, \Delta_{km}, \Sigma) - \sum_{j=1}^{L} \Phi(\Delta_{jl}) \sum_{m=1}^{M} \Phi(\Delta_{km})\right\}$$

- MCMC methods (Dobra and Mohammadi, 2018)
- Methods based on bridge functions, with a statistic \hat{r} computed on the observed data such that $\hat{r} = B(\hat{\Sigma})$.
 - Kruskal (1958): continuous data

$$\hat{r} = \hat{\tau}, \, \tau = B^{cc}(\Sigma) = \frac{2}{\pi} \arcsin(\Sigma)$$

► Fan et al. (2017): binary data

$$r = B^{bb}(\Sigma) = 2\{\Phi(\Delta_j, \Delta_k, \Sigma) - \Phi(\Delta_j)\Phi(\Delta_k)\}, \text{ where } \Delta_j = \Phi^{-1}(F_j(C_j))$$

 \triangleright Zhang et al. (2021): multinomial data of L and M categories

$$r = B^{dd}(\Sigma) = 2 \left\{ \sum_{l=1}^{L} \sum_{m=1}^{M} \Phi(\Delta_{jl}, \Delta_{km}, \Sigma) - \sum_{l=1}^{L} \Phi(\Delta_{jl}) \sum_{m=1}^{M} \Phi(\Delta_{km}) \right\}$$

 \rightarrow under debate (Dey and Zippunikov, 2022), does not have a solution in (-1,1) for high numbers of categories.

• MLE approach:

$$L_n(F_1,\ldots,F_d,\Sigma) = \frac{1}{n}\sum_{i=1}^n \log f(x_{i1},\ldots,x_{id},\Sigma)$$

• MLE approach:

$$L_n(F_1,\ldots,F_d,\Sigma) = \frac{1}{n}\sum_{i=1}^{n}\log f(x_{i1},\ldots,x_{id},\Sigma)$$

 \rightarrow Issue: high computational cost, evaluation of n d-p-dimensional integrals: $O(n(d-p)^3)$ (Genz and Bretz, 2002).

• MLE approach:

$$L_n(F_1,\ldots,F_d,\Sigma) = \frac{1}{n}\sum_{i=1}^{n}\log f(x_{i1},\ldots,x_{id},\Sigma)$$

- \rightarrow Issue: high computational cost, evaluation of n d-p-dimensional integrals: $O(n(d-p)^3)$ (Genz and Bretz, 2002).
- \rightarrow Solution: consider the **pairwise MLE** ²: $O(n(d-p)^2)$.

²Mazo, Karlis and Rau, JASA, 2024

Thesis contributions

Multi-omics network inference

- Novel approach for simultaneous multi-omics integration.
- Application to a real-life INRAE data set.
- Availability on CRAN.

Gaussian copula model

- Interpretation of extreme parameter values for mixed variables.
- Mixed density and independence properties.
- Novel estimation approach of the correlation matrix.

Pairwise MLE approach

$$L_n(F_1,\ldots,F_d,\Sigma) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j < j'} \log f^{(jj')}(x_{ij},x_{ij'},\Sigma_{jj'})$$

with the pairwise copula density:

$$f^{(j,j')}(x_{ij},x_{ij'},\boldsymbol{\Sigma}_{jj'}) = \\ \begin{cases} C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j),F_{j'}(x_{j'}))f_j(x_j)f_{j'}(x_{j'}) \text{ when both variables are continuous} \\ f_j(x_j)\int_{F_{j'}(x_{j'})}^{F_{j'}(x_{j'})}C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j),v)d\lambda(v) \text{ when the pair is mixed} \\ C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j),F_{j'}(x_{j'}))-C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j-),F_{j'}(x_{j'}))\\ -C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j),F_{j'}(x_{j'}-))+C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j-),F_{j'}(x_{j'}-)) \text{ otherwise} \end{cases}$$

Pairwise MLE approach

 $\frac{d(d-1)}{2}$ separate problems:

$$\hat{\Sigma}_{jj'} = \operatorname*{argmax}_{\Sigma_{jj'} \in (-1,1)} \frac{1}{n} \sum_{i=1} \log f^{(jj')}(x_{ij}, x_{ij'}, \Sigma_{jj'}).$$

$$f^{(j,j')}(x_{ij},x_{ij'},\Sigma_{jj'}) = \begin{cases} c_{\Sigma_{jj'}}(F_j(x_j),F_{j'}(x_{j'}))f_j(x_j)f_{j'}(x_{j'}) \text{ when both variables are continuous} \\ f_j(x_j)\int_{F_{j'}(x_{j'})}^{F_{j'}(x_{j'})}c_{\Sigma_{jj'}}(F_j(x_j),v)d\lambda(v) \text{ when the pair is mixed} \\ c_{\Sigma_{jj'}}(F_j(x_j),F_{j'}(x_{j'}))-c_{\Sigma_{jj'}}(F_j(x_j-),F_{j'}(x_{j'}))\\ -C_{\Sigma_{jj'}}(F_j(x_j),F_{j'}(x_{j'}-))+c_{\Sigma_{jj'}}(F_j(x_j-),F_{j'}(x_{j'}-)) \text{ otherwise} \end{cases}$$

Pairwise MLE approach

 $\frac{d(d-1)}{2}$ separate problems:

$$\hat{\Sigma}_{jj'} = \operatorname*{argmax}_{\Sigma_{jj'} \in (-1,1)} \frac{1}{n} \sum_{i=1} \log f^{(jj')}(x_{ij}, x_{ij'}, \Sigma_{jj'}).$$

$$f^{(jj')}(x_{ij},x_{ij},\boldsymbol{\Sigma}_{(jj')}) = \\ \begin{cases} C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j),F_{j'}(x_{j'}))f_j(x_j)f_{j'}(x_{j'}) \text{ when both variables are continuous} \\ f_j(x_j)\int_{F_{j'}(x_{j'})}^{F_{j'}(x_{j'})} C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j),v)d\lambda(v) \text{ when the pair is mixed} \\ C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j),F_{j'}(x_{j'})) - C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j-),F_{j'}(x_{j'})) \\ -C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j),F_{j'}(x_{j'}-)) + C_{\boldsymbol{\Sigma}_{jj'}}(F_j(x_j-),F_{j'}(x_{j'}-)) \text{ otherwise} \end{cases}$$

Marginal estimation

How to estimate the marginals F_1, \ldots, F_d ?

 If their parametric form is known, estimate the parameters for each marginal

② Otherwise, estimate $\hat{F}_1,\ldots,\hat{F}_d$ where $\hat{F}_j=rac{1}{n+1}\sum_{i=1}\mathbb{1}_{\{X_j^i\leq x\}}$

Pairwise semi-parametric MLE approach

 $\frac{d(d-1)}{2}$ separate problems:

$$\hat{\Sigma}_{jj'} = \operatorname*{argmax}_{\Sigma_{jj'} \in (-1,1)} \frac{1}{n} \sum_{i=1} \log f^{(jj')}(x_{ij}, x_{ij'}, \Sigma_{jj'}).$$

$$f^{(jj')}(x_{ij},x_{ij'},\Sigma_{jj'}) = \begin{cases} C_{\Sigma_{jj'}}(\hat{F}_j(x_j),\hat{F}_{j'}(x_{j'}))f_j(x_j)f_{j'}(x_{j'}) \text{ when both variables are continuous} \\ f_j(x_j) \int_{\hat{F}_{j'}(x_{j'})}^{\hat{F}_{j'}(x_{j'})} C_{\Sigma_{jj'}}(\hat{F}_j(x_j),v)d\lambda(v) \text{ when the pair is mixed} \\ C_{\Sigma_{jj'}}(\hat{F}_j(x_j),\hat{F}_{j'}(x_{j'})) - C_{\Sigma_{jj'}}(\hat{F}_j(x_{j-1}),\hat{F}_{j'}(x_{j'})) \\ -C_{\Sigma_{jj'}}(\hat{F}_j(x_j),\hat{F}_{j'}(x_{j'-1})) + C_{\Sigma_{jj'}}(\hat{F}_j(x_{j-1}),\hat{F}_{j'}(x_{j'-1})) \text{ otw.} \\ \text{where } \hat{F}_j = \frac{1}{n+1} \sum_{i=1}^n \mathbb{1}_{\{X_{ij} \leq x\}}. \end{cases}$$

Simulations:

- 1 Pairwise Simulation of four variables:
 - ► $X_1 \sim \mathcal{N}(0,1)$
 - $X_2 \sim \mathcal{B}(0.5)$
 - $X_3 \sim \mathcal{P}(1)$
 - ► $X_4 \sim \mathcal{NB}(1, 0.5)$

that are linked by a Gaussian copula of correlation coefficient ρ , i.e.

$$F(X_1, X_2, X_3, X_4) = C_{\Sigma}(F_1(X_1), F_2(X_2), F_3(X_3), F_4(X_4)),$$

where
$$\Sigma = \begin{pmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{pmatrix}.$$

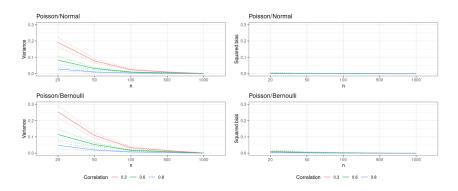
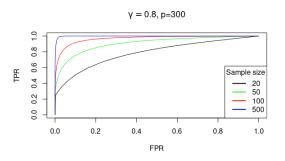


Figure: Variance and squared bias for pairs of variables for N=500 estimations

Simulations:

- 2 **High dimensional** Simulation of d = 300 variables:
 - $X_1, \ldots, X_{100} \sim \mathcal{N}(0, 1)$
 - $X_{101}, \ldots, X_{200} \sim \mathcal{NB}(1, 0.5)$
 - $X_{201}, \ldots, X_{300} \sim \mathcal{B}(0.5)$

linked by a Gaussian copula of correlation matrix of sparsity 0.8.



sample size	AUC
20	0.79 (0.01)
50	0.90 (0.007)
100	0.97 (0.004)
500	0.998 (0.0002)

Figure: ROC curve and AUC for 300 variables and different sample sizes

FPR: proportion of coefficients detected as significant among the non-significant ones TPR: proportion of coefficients correctly detected as significant among the significant ones

Real data

→ International Cancer Genome Consortium dataset³

Different:

- cancer types
- countries
- datasets
- → BRCA-US (after pre-processing):
 - 250 individuals
 - 108 RNAseq (counts)
 - 108 proteins (continuous expression)
 - 62 mutations (binary)

³Zhang et al.,The International Cancer Genome Consortium Data Portal., 2019

Coefficient detection

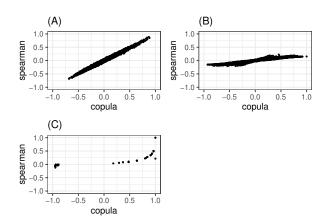


Figure: Comparison of Spearman's ρ^{S} and the copula correlation coefficient for (A) continuous-continuous pairs, (B) mixed pairs, (C) binary-binary pairs. The RNAseq counts have been classified as continuous because of their high number of values.

Network visualization

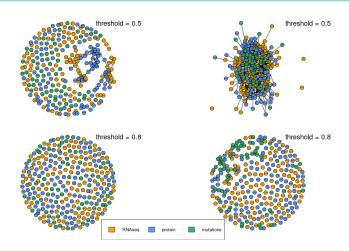


Figure: Correlation networks for Spearman's ρ^{S} (left) and the copula (right)

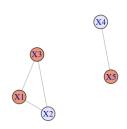
- Introduction
- Relevance networks
 - State of the art
 - The model
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Table of Contents

- Introduction
- Relevance networks
 - State of the art
 - The mode
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Influence of the remaining variables.

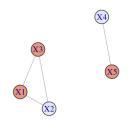
 X_1, X_3, X_5 : RNAseq (counts), X_2 and X_4 : transcription factors (binary). **Pairwise relationships**

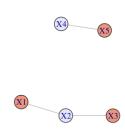


no edge: independence between X_i and $X_k \iff \Sigma_{ik} = 0$

Influence of the remaining variables.

 X_1, X_3, X_5 : RNAseq (counts), X_2 and X_4 : transcription factors (binary). Pairwise relationships Global relationships





no edge: independence between X_i and $X_k \iff \Sigma_{ik} = 0$

no edge: independence between X_i and X_k conditionally to

the rest of the variables

Graphical models

- GGM (Krämer et al. (2009)): Gaussian data
- NPN (Liu et al. (2009)): Gaussian copula for continuous variables
- \rightarrow conditional independence relationships encoded in $\Omega = \Sigma^{-1}$

Graphical models

- GGM (Krämer et al. (2009)): Gaussian data
- NPN (Liu et al. (2009)): Gaussian copula for continuous variables
- ightarrow conditional independence relationships encoded in $\Omega = \Sigma^{-1}$

What about mixed variables with a Gaussian copula structure?

Graphical models 000000000

Graphical models

- GGM (Krämer et al. (2009)): Gaussian data
- NPN (Liu et al. (2009)): Gaussian copula for continuous variables
- \rightarrow conditional independence relationships encoded in $\Omega = \Sigma^{-1}$

What about mixed variables with a Gaussian copula structure? The latent **conditional dependencies** are encoded in $\Omega = \Sigma^{-1}$.

Penalized inversion

Graphical lasso 4:

$$\hat{\Omega}_{\lambda} = \operatorname*{argmin}_{\Omega} \left(\operatorname{tr}(\hat{\Sigma}\Omega) - \log \det(\Omega) + \lambda ||\Omega||_1 \right)$$

 λ : penalization parameter

⁵Wang, Kim et Li, The Annals of Statistics, 2013

⁴Friedman, Hastie, Tibshirani, Biostatistics, 2008

Penalized inversion

Graphical lasso 4:

$$\hat{\Omega}_{\lambda} = \mathop{\mathsf{argmin}}_{\Omega} \left(\mathop{\mathsf{tr}}(\hat{\Sigma}\Omega) - \log \det(\Omega) + \lambda ||\Omega||_1 \right)$$

 λ : penalization parameter

Optimal λ choice by the HBIC criterion: ⁵

$$\lambda_{\mathrm{opt}} = \mathrm{argmin} \left(\mathrm{tr}(\hat{\Sigma} \hat{\Omega}_{\lambda}) - \log \det(\hat{\Omega}_{\lambda}) + \log(\log(n)) \frac{\log(d)}{n} s_{\lambda} \right)$$
 where s_{λ} is the number of non-null edges in $\hat{\Omega}_{\lambda}$

□▶ ◀畵▶ ◀불▶ ◀불▶ ▲ll 쒸오C

⁴Friedman, Hastie, Tibshirani, Biostatistics, 2008

⁵Wang, Kim et Li, The Annals of Statistics, 2013

Application to our estimator

Recall

$$\hat{\Sigma}_{jj'} = \operatorname*{argmax}_{\Sigma_{jj'} \in (-1,1)} \frac{1}{n} \sum_{i=1} \log f^{(jj')}(x_{ij}, x_{ij'}, \Sigma_{jj'}).$$

Graphical lasso:

$$\hat{\Omega}_{\lambda} = \operatorname*{argmin}_{\Omega} \left(\operatorname{tr}(\hat{\Sigma}\Omega) - \log \det(\Omega) + \lambda ||\Omega||_{1} \right)$$

 λ : penalization parameter

Optimal λ choice by the HBIC criterion: ⁵

$$\lambda_{\mathrm{opt}} = \mathrm{argmin} \left(\mathrm{tr}(\hat{\Sigma} \hat{\Omega}_{\lambda}) - \log \det(\hat{\Omega}_{\lambda}) + \log(\log(n)) \frac{\log(d)}{n} s_{\lambda} \right) \text{ where } s_{\lambda}$$
 is the number of non-null edges in $\hat{\Omega}_{\lambda}$

36 / 52

⁵Wang, Kim et Li, The Annals of Statistics, 2013

Simulations:

- 3 Latent conditional dependence structure Simulation of d=30variables:
 - $X_1, \ldots, X_{10} \sim \mathcal{N}(0, 1000)$
 - $X_{11}, \ldots, X_{20} \sim \mathcal{NB}(1000, 0.3)$
 - $X_{21}, \ldots, X_{30} \sim \mathcal{B}(0.5)$

linked by a latent partial correlation matrix P of sparsity 0.8.

Simulations:

- 3 **Latent conditional dependence structure** Simulation of d = 30 variables:
 - $X_1, \ldots, X_{10} \sim \mathcal{N}(0, 1000)$
 - $X_{11}, \ldots, X_{20} \sim \mathcal{NB}(1000, 0.3)$
 - $X_{21}, \ldots, X_{30} \sim \mathcal{B}(0.5)$

linked by a latent partial correlation matrix P of sparsity 0.8.

$$F(X_1,\ldots,X_{30})=C_{\Sigma}(F_1(X_1),\ldots,F_{30}(X_{30})),$$

where $\Omega = \Sigma^{-1}$ is of sparsity 0.8 and so $P_{jk} = \frac{-\Omega_{jk}}{\sqrt{\Omega_{jj}\Omega_{kk}}}$ also is of sparsity 0.8.

PPMLE vs. Bridge function (Zhang et al., 2021): ROC curve for $\lambda \in \log\{1.01,\ldots,3\}$.

Sample size	20	50	200	500
PPMLE	0.67	0.71	0.77	0.78
Bridge	0.63	0.66	0.72	0.76

Table: Average AUC values over all pairs for N=100 replications.

PPMLE vs. Bridge function (Zhang et al., 2021): ROC curve for $\lambda \in \log\{1.01,\ldots,3\}$.

Sample size	20	50	200	500
PPMLE	0.67	0.71	0.77	0.78
Bridge	0.63	0.66	0.72	0.76

Table: Average AUC values over all pairs for N=100 replications.

	AUC on discrete pairs		AUC on continuous-discrete pairs		
Sample size	PPMLE	Bridge	PPMLE	Bridge	
20	0.65	0.60	0.84	0.73	
50	0.70	0.60	0.91	0.76	
200	0.77	0.64	0.93	0.83	
500	0.80	0.69	0.93	0.92	

Table: Average AUC values over all pairs involving discrete variables for N=100 replications.

Real data illustration

ICGC data network

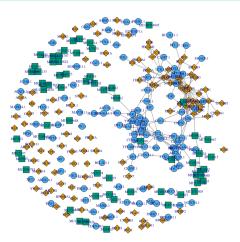


Figure: Latent partial correlation graph

Table of Contents

- Introduction
- Relevance networks
 - State of the art
 - The model
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Table of Contents

- Introduction
- Relevance networks
 - State of the art
 - The mode
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Multi-omics network inference

- Novel approach for simultaneous multi-omics integration.
- Application to a real-life INRAE data set.
- Availability on CRAN.

Gaussian copula model

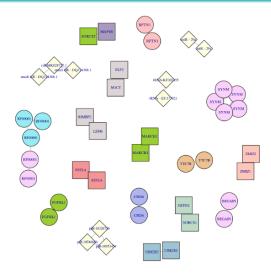
- Interpretation of extreme parameter values for mixed variables.
- Mixed density and independence properties.
- Novel estimation approach of the correlation matrix

INRAE data set:6

- NR56 (=pregnancy rate after two cycles) measured per bull, n = 519
- 2) two groups: fertile $(n_F = 51)$ and subfertile $(n_S = 47)$
- 3 d = 485 variables: 183 CpGs, 159 SNPs, 143 sncRNAs

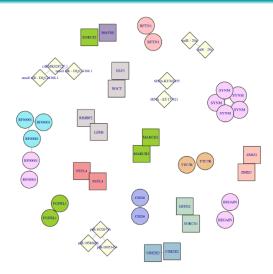
ightarrow are there any differences in the regulation networks?

Fertile bulls



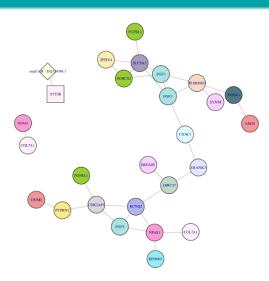
circle: CpG, square: SNP, diamond: sncRNA, color: chromosome

Fertile bulls

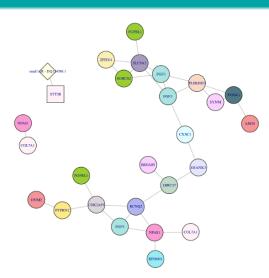


circle: CpG, square: SNP, diamond: sncRNA, color: chromosome

MAP1B& SORCS2: brain development



circle: CpG, square: SNP, diamond: sncRNA, color: chromosome



circle: CpG, square: SNP, diamond: sncRNA, color: chromosome COL7A1: skin disorder, NPAS1: central nervous system dvpt

Subfertile bulls

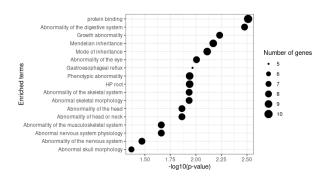


Figure: Functional enrichment dot plot obtained via the ensembldb package

Table of Contents

- Introduction
- Relevance networks
 - State of the art
 - The model
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

- Introduction
- Relevance networks
 - State of the art
 - The mode
 - Estimation
 - Real data illustration
- Graphical models
 - State of the art
 - Estimation
 - Real data illustration
- Bull fertility study
- Conclusion

Thesis contributions

Multi-omics network inference

- Novel approach for simultaneous multi-omics integration.
- Application to a real-life INRAE data set.
- Availability on CRAN.

Gaussian copula model

- Interpretation of extreme parameter values for mixed variables.
- Mixed density and independence properties.
- Novel estimation approach of the correlation matrix.

Availability

- R package heterocop available on CRAN
- RShiny version https://shiny-heterocop.sk8.inrae.fr/

- R package heterocop available on CRAN
- RShiny version https://shiny-heterocop.sk8.inrae.fr/

Pre-prints:

- Estimation and properties of Σ: Gaussian copula correlation network analysis with application to multi-omics data, https://hal.inrae.fr/hal-04847648. Under revision.
- Estimation of Ω and comparison with the bridge functions method: Multi-omics network inference with a Gaussian copula model, https://hal.inrae.fr/hal-05173829v1. Under revision.

Multi-omics network inference

- Novel approach for simultaneous multi-omics integration.
- Application to a real-life INRAE data set.
- Availability on CRAN.
- Biological prior integration.

Gaussian copula model

- Interpretation of extreme parameter values for mixed variables.
- Mixed density and independence properties.
- Novel estimation approach of the correlation matrix.
- Theoretical properties of the estimator.

1 Integration of a biological prior on Ω via the coefficient-wise penalized <code>gLasso</code> approach

$$\hat{\Omega}_{\lambda} = \mathop{\mathsf{argmin}}_{\Omega} \left(\mathop{\mathsf{tr}}(\hat{\Sigma}\Omega) - \log \det(\Omega) + ||\Lambda\Omega||_1 \right),$$

where Λ is a matrix of the size of Σ and Ω - is it better to favor close biological entities? How can we define "closeness"?

2 Proof of consistency/asymptotical normality

2 Proof of consistency/asymptotical normality

Sketch of proof:

• Check that in all cases, for a pair (X_j, X_k) , the empirical mean of the score function has a root on (-1,1), and uniformly converges to a function which has a unique root on (-1,1).

2 Proof of consistency/asymptotical normality

Sketch of proof:

- Check that in all cases, for a pair (X_j, X_k) , the empirical mean of the score function has a root on (-1,1), and uniformly converges to a function which has a unique root on (-1,1).
- Check conditions from Bickel et al. (1993) for consistency and asymptotical normality of GM—estimates.

2 Proof of consistency/asymptotical normality

Sketch of proof:

- ① Check that in all cases, for a pair (X_j, X_k) , the empirical mean of the score function has a root on (-1,1), and uniformly converges to a function which has a unique root on (-1,1).
- Check conditions from Bickel et al. (1993) for consistency and asymptotical normality of GM—estimates.

Tools:

- Boundedness of the first and second-order derivatives of the score function.
- Term decomposition inspired by Ryumgaart (1974), based on an independent copy of the observations.

Remaining questions

Multi-omics network inference

- Novel approach for simultaneous multi-omics integration.
- Application to a real-life INRAE data set.
- Availability on CRAN.
- Biological prior integration.
- How to handle non-monotonic relationships?
- How to interpret the values of Ω ?

Gaussian copula model

- Interpretation of extreme parameter values for mixed variables.
- Mixed density and independence properties.
- Novel estimation approach of the correlation matrix.
- Theoretical properties of the estimator.
- How to estimate the variance of $\hat{\Sigma}$ and perform thresholding?
- Is the HBIC a suitable criterion?

Additional slides

Expressions of CC and MI

$$\rho^{P}(X,Y) = \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{(\mathbb{E}[X^{2}] - \mathbb{E}[X]^{2})(\mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2})}}$$
$$\rho^{S}(X,Y) = \rho^{P}(r(X),r(Y))$$
$$MI(X,Y) = \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy$$

Expression of C_{Σ}^{p}

$$\frac{\partial^{p} C_{\Sigma}(u_{1},\ldots,u_{d})}{\partial u_{1}\ldots\partial u_{p}} = \int_{0}^{u_{p+1}} \cdots \int_{0}^{u_{d}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\mathbf{v}^{T}(\Sigma^{-1}-I)\mathbf{v}\right) dq_{p+1}\ldots dq_{d}$$

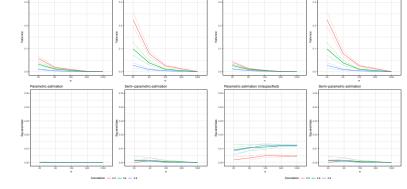
where $\mathbf{v} = (v_1, \dots, v_d)$ such that

$$v_i = \begin{cases} \Phi^{-1}(u_i) \text{ if } i \in \{1, \dots, p\} \\ \Phi^{-1}(q_i) \text{ if } i \in \{p+1, \dots, d\} \end{cases}$$

and I denotes the identity matrix.

Parametric misspecification

Parametric estimation



Parametric estimation (missnecitied)

Figure: Variance and bias of $\rho = 0.3, 0.6, 0.8$ parametrically estimated between a $\mathcal{N}(0, 1)$ and a NB(1, 0.5) distribution, where the NB has been correctly specified (left) or misspecified for a poisson (right).

Semi_narametric estimation

Computational time

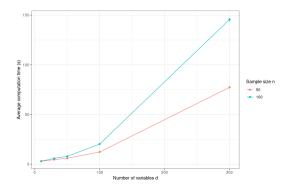
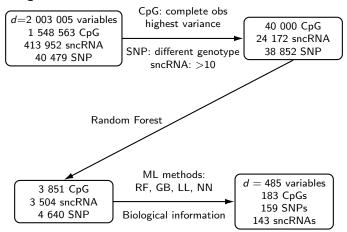


Figure: Computational time for the estimation of Σ for the PPMLE.

INRAE bull fertility data set

Pre-processing ⁷



⁷Costes et al. 2022