

<u>Johann Dreo, Claire Laudy, Sebastian Lobentanzer, Marko Baric,</u> <u>Ekaterina Gaydukova, Matthieu Najm, Benno Schwikowski</u>

Intégration reproductible d'informations de haut niveau dans des graphes de connaissances sémantiques avec OntoWeaver et BioCypher, application en oncologie et en écologie

Reproducible Mapping of Tabular Data into Semantic Knowledge Graphs with OntoWeaver and BioCypher, application in oncology and ecology

Summary

1. The problem

Use-case: cancer databases integration

Example Problem

• H2020 Decider project

« develop diagnostic **tools** [...] for high-grade serous ovarian **cancer** [...] **find effective treatments** to patients with a drug-resistant cancer »

- Oncodash [https://github.com/oncodash]
 - Clinical oncology tumor board decision support system
 - End-user = geneticists, clinicians
 - Find drugs actionable on patient's alterations

Actionable drugs

Courtesy of Tary Muranen, research geneticist,

Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland

2. How to

Building up Semantic Knowledge Graphs

Semantic Knowledge Graphs

- A graph
- showing high-level entities (information ≠ data)
- of various types

Scalability?

- Biological knowledge is huge.
- The graph needs to be designed specifically for each use-case.
- Doing so by hand cannot scale.
- We need reproducibility tooling.

From Causal integration of multi[®]omics data with prior knowledge to generate mechanistic hypotheses

Aurelien Dugourd et al. Mol Syst Biol (2021) 17: e9730

Causal network summarising the mechanistic hypotheses systematically generated by CARNIVAL. The network comprises 449 edges. It represents the propagation of signals connecting the deregulated kinases, phosphatases, TFs and metabolites in kidney cancer.

biomedical knowledge graphs

Adapters Knowledge graph Resources SQL LPG RDF etc .CSV Tissue -0http:// Drug \frown -0 ftp:// Optimization Gene GO DO etc Configuration ... **Ontologies** Harmonization

Democratizing knowledge representation with BioCypher

Sebastian Lobentanzer, ..., Johann Dreo, ..., Benno Schwikowski, ..., et al.

Nature Biotechnology **volume 41**, pp. 1056–1059 (2023).

10/26

FAIR SKG building

- Automated "adapters" scripts
 - Findable
 - Accessible
 - Interoperable
 - Reproducible
- Make a tailored SKG = enable a set of adapters.

BioCypher, but...

- An adapter is a Python script:
 - allow accessing any kind of data,
 - requires programming skills.

• However:

- most of our data is tabular in nature,
- we would want endusers to participate.

3. Our solution

Declarative mapping of tabular data

- Transmogrify tabular data into a SKG
- Using a (simple) "mapping" declaration

Given a table, ...

	patient_id	referenceGenome	dataVersion	citatio	nPMids	
1	P2	RG1	v3.14	10	11	
2	P1	RG1	v3.14		11	12

row:

rowIndex:

to_subject: variant

metadata:

source: "OntoWeaver"

transformers:

- map:

columns:

patient_id

to_object: patient via_relation: patient_has_variant

- split:

columns:

citationPMids

to_object: publication via_relation: reference_genome separator: "."

- map:

columns:

- dataVersion

to_property:

- version

for_objects:

.. map columns to nodes, ...

	patient_id	referenceGenome	dataVersion	citationPMids	
1	P2	RG1	v3.14	10 publication	
2	Pl	RG1	v3.14	11 12	

row:

rowIndex:

to_subject: variant

metadata:

source: "OntoWeaver"

transformers:

- map:

columns:

patient_id

to_object: patient

via_relation: patient_has_variant

- split:

columns:

citationPMids

to_object: publication

via_relation: reference_genome
separator: ","

ooparat

- map:

columns:

- dataVersion

to_property:

- version

for_objects:

... link subject and nodes with edges, ...

Γ					
L		patient_has_variant	reference_genome		published
L		patient_id	referenceGenome	dataVersion	citationPN ids
L	1	P2	RG1	v3.14	10 publication
	2	P1	R61	v3.14	11 12

row:

rowIndex:

to_subject: variant

metadata:

source: "OntoWeaver"

transformers:

- map:

columns:

- patient_id

to_object: patient via_relation: patient_has_variant

- split:

columns:

citationPMids

to_object: publication

via_relation: reference_genome

separator: ","

- map:

columns:

dataVersion

to_property:

- version

for_objects:

... you have a typed graph.

row:

rowIndex:

to_subject: variant

metadata:

source: "OntoWeaver"

transformers:

- map:

columns:

-patient id

to_object: patient via_relation: patient_has_variant

- split:

columns:

citationPMids

to_object: publication via_relation: reference_genome separator: ","

- map:

columns:

- dataVersion

to_property:

- version for_objects:

4. Example

A SKG builder for cancer databases

Example

- OncodashKB
 - <u>https://gihutb.com/oncodash/</u> <u>oncodashkb</u>
 - integrate cancer databases (OncoKB, CGI)
 - with Gene Ontology

High-level Biomedical Data Integration in a Semantic Knowledge Graph with OncodashKB for finding Personalized Actionable Drugs in Ovarian Cancer, J. Dreo et al., 10th EACR conference on Cancer Genomics, Multiomics and Computational Biology, Bergamo (2024).

19/26

INSTITUT

OncodashKB information integration

5. Conclusion

Just try it

Conclusion

- OntoWeaver:
 - FLOSS software in Python.
 - <u>https://github.com/oncodash/ontoweaver</u>
 - Maps tabular data into Semantic Knowledge Graphs.
 - Brings FAIR SKG building blocks.
 - Relatively easy to setup and maintain.
 - Allows to build up tailored SKG as needed.

Perspectives

 High-level Information Fusion • BRCA2 {p1:x}
• 139618 {p1:y , p2:z}
=> BRCA2 {p1:[x,y], p2:z}

Reproducible Mapping of Tabular Data into Semantic Knowledge Graphs with ^{25/26} OntoWeaver and BioCypher, application in oncology and ecology

https://github.com/oncodash/ontoweaver

https://research.pasteur.fr/en/team/csb/

- Democratizing knowledge representation with BioCypher, S. Lobentanzer *et al.*, *Nature Biotechnology*, vol. 41, pp. 1056–1059 (2023).
- High-level Biomedical Data Integration in a Semantic Knowledge Graph with OncodashKB for finding Personalized Actionable Drugs in Ovarian Cancer, J. Dreo et al., 10th EACR conference on Cancer Genomics, Multiomics and Computational Biology, Bergamo (2024).
- Reproducible Mapping of Tabular Data into Semantic Knowledge Graphs with OntoWeaver and BioCypher, J. Dreo *et al.*, 27th International Conference on Information Fusion, Venizia (2024).

Institut Pasteur 25-28 rue du docteur Roux 75724 Paris Cedex 15

Institut Pasteu

