

[GGM inference](#page-2-0) [NSBM model](#page-18-0) [Our Procedure](#page-35-0) [Simulations](#page-37-0)

Improving Gaussian Graphical Model inference by modeling the graph structure

Valentin Kilian, Tabea Rebafka, Fanny Villers

Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université, Paris

Netbio, 15 novembre 2023

[GGM inference](#page-2-0) [NSBM model](#page-18-0) [Our Procedure](#page-35-0) [Simulations](#page-37-0)

[GGM inference](#page-2-0)

[NSBM model](#page-18-0)

[Our Procedure](#page-35-0)

[Simulations](#page-37-0)

Data

Biological data :

- gene expression data
- or quantitative amounts of proteins
	- $p =$ number of entities (genes, proteins)
	- $n =$ number of repeating observations

Aim : infer the direct links between entities \Leftrightarrow infer a graph:

- nodes $=$ entities (genes, proteins)
- $-$ edge $=$ direct relation between two entities
- **•** regulations between genes
- protein-protein interactions

Gaussian Graphical model (GGM)

random variables Y_1, \ldots, Y_p : expression of the p genes or proteins

Assumption GGM : $(Y_1, \ldots, Y_p) \sim \mathcal{N}(0, \Sigma)$

Direct links

Denote $\Omega = \Sigma^{-1} = (w_{ii})_{1 \le i,j \le p}$: precision matrix

 $i \sim j$ (edge between i and $j) \Leftrightarrow$ corr $(\mathsf{Y}_i, \mathsf{Y}_j | (\mathsf{Y}_k)_{k \neq i, j}) \neq 0$ $\Leftrightarrow \omega_{ii} \neq 0$

Graph inference in GGM

Inference of the graph edges based on a n-sample of (Y_1, \ldots, Y_p) High-dimensional setting : $p \gg n$

Literature:

- infer the precision matrix Ω (glasso)
- infer the neighboors of each node (Meinshausen Bühlmann)
- multiple-testing approach $H_{0,ii}$: $w_{ii} = 0$ against $H_{1,ii}$: $w_{ii} \neq 0$

Graph inference in GGM

Inference of the graph edges based on a n-sample of (Y_1, \ldots, Y_p) High-dimensional setting : $p \gg n$

Literature:

- infer the precision matrix Ω (glasso)
- infer the neighboors of each node (Meinshausen Bühlmann)
- multiple-testing approach $H_{0,ij}$: $w_{ij} = 0$ against $H_{1,ij}$: $w_{ij} \neq 0$

Inference is difficult:

- lack of power
- graph inferred can be different according to the method
- in general, no control on the inferred graph

Multiple-testing approach

$$
H_{0,ij}: \underbrace{w_{ij}=0}_{i\approx j} \quad \text{against} \quad H_{1,ij}: \underbrace{w_{ij}\neq 0}_{i\sim j}
$$

Multiple-testing approach

$$
H_{0,ij}: \underbrace{w_{ij}=0}_{i\approx j} \quad \text{against} \quad H_{1,ij}: \underbrace{w_{ij}\neq 0}_{i\sim j}
$$

Test statistics ?

• if $p \ll n$: natural test statistics based on the inverse of the sample covariance matrix $\widehat{\boldsymbol{\Sigma}}$

Multiple-testing approach

$$
H_{0,ij}: \underbrace{w_{ij}=0}_{i\approx j} \quad \text{against} \quad H_{1,ij}: \underbrace{w_{ij}\neq 0}_{i\sim j}
$$

Test statistics ?

- if $p \ll n$: natural test statistics based on the inverse of the sample covariance matrix $\widehat{\Sigma}$
- in high-dimensional setting : Ref: Liu et al 2013, Ren et al 2015, Jankova et al 2018
	- estimators for the entries of the precision matrix w_{ii}
	- based on different modifications of initial Lasso-regularized estimators
	- proved to be asymptotically normal a sparcity condition
	- enables the construction of test statistics to test $H_{0,ii}$

Multiple-testing approach

$$
H_{0,ij}: \underbrace{w_{ij}=0}_{i\approx j} \quad \text{against} \quad H_{1,ij}: \underbrace{w_{ij}\neq 0}_{i\sim j}
$$

Test statistics ?

- if $p \ll n$: natural test statistics based on the inverse of the sample covariance matrix $\widehat{\Sigma}$
- in high-dimensional setting : Ref: Liu et al 2013, Ren et al 2015, Jankova et al 2018
	- estimators for the entries of the precision matrix w_{ii}
	- based on different modifications of initial Lasso-regularized estimators
	- proved to be asymptotically normal a sparcity condition
	- enables the construction of test statistics to test $H_{0,ii}$

Simultaneous tests: test $H_{0,ii}$ for all pairs of variables (i, j) .

 \hookrightarrow multiple testing problem

Inference of the graph : detect significant edges

- with control on the inferred graph in term of False Discovery Rate (FDR: proportion of errors among the discovered edges)
	- (Bonferroni)
	- Benjamini and Hochberg
	- Liu et al 2013: asymtotic FDR control under sparcity assumption

Inference of the graph : detect significant edges

- with control on the inferred graph in term of False Discovery Rate (FDR: proportion of errors among the discovered edges)
	- (Bonferroni)
	- Benjamini and Hochberg
	- Liu et al 2013: asymtotic FDR control under sparcity assumption
- with high ability to detect true edges
	- multiple testing literature : Ref: Efron & al, 2001, Efron, 2004, Sun & Cai, 2007, Cai & Sun, 2009, Sun & Cai, 2009
	- incorporating some latent dependence structure may allow more detections

incorporating some latent structure ?

Graph to infer

Matrice with test statistics for each pairs of variables (i, j)

- learning the graph structure (nodes clustering)
- incorporating it in the multiple-testing procedure

learning the graph structure ?

 \hookrightarrow modeling the graph structure through the adjacency matrix A

 \hookrightarrow random graph model on A

 \bullet random graph model on A : stochastic block model SBM

• Or A is unknown \rightarrow NSBM model : Noisy SBM

Graph to infer

Observed: $X:(p,p)$ matrix $X =$ Noisy version of A with X_{ii} : test statistic

 $X \in \mathbb{R}^{p \times p}$

• Or A is unknown \rightarrow NSBM model : Noisy SBM

Observed: $X:(p,p)$ matrix $X =$ Noisy version of A with X_{ii} : test statistic

 $X \in \mathbb{R}^{p \times p}$

Estimation of the parameters of the model (nodes clustering)

• Or A is unknown \rightarrow NSBM model : Noisy SBM

Observed: $X:(p,p)$ matrix $X =$ Noisy version of A with X_{ii} : test statistic

$$
X\in\mathbb{R}^{p\times p}
$$

- Estimation of the parameters of the model (nodes clustering)
- Multiple-testing procedure incorporating the estimated parameters

$$
H_{0,ij} : \underbrace{A_{ij} = 0}_{i \approx j} \quad \text{against} \quad H_{1,ij} : \underbrace{A_{ij} = 1}_{i \sim j}
$$

[GGM inference](#page-2-0)

[NSBM model](#page-18-0)

[Our Procedure](#page-35-0)

[Simulations](#page-37-0)

SBM

Stochastic Block Model - SBM

- Each node belongs to one of Q latent groups. Latent variables Z_1, \ldots, Z_p i.i.d. with values $\{1, \ldots, Q\}$ and probability $\pi_q = \mathbb{P}(Z_1 = q)$
- Conditionally on Z, the variables A_{ij} are independent Bernoulli variables with parameters characterized by latent groups :

$$
A_{ij}|(Z_i = q, Z_j = I) \sim Bernoulli(\gamma_{q, I})
$$

Noisy Stochastic Block Model - NSBM

NSBM

- The true underlying binary graph A is a SBM
	- with Q groups
	- connectivity parameters $\gamma = (\gamma_{a,l})_{1 \leq a, l \leq Q}$
	- group proportions $\pi = (\pi_q)_{1 \leq q \leq Q}$
	- latent variables $Z_i \in \{1, \ldots, Q\}$ for $i = 1, \ldots, p$
- Conditionally on A and Z, the observations X_{ii} are independent with

$$
X_{ij}|Z, A \sim \left\{\begin{array}{ll} \mathcal{N}(0, \sigma_0^2) & \text{if } A_{i,j} = 0 \quad (\text{if } i \approx j) \\ \mathcal{N}(\mu_{ql}, \sigma_{ql}^2) & \text{if } A_{i,j} = 1 \quad (\text{if } i \sim j), Z_i = q, Z_j = l \end{array}\right.
$$

NSBM model

Mixture model :

Observations : $X = (X_{ii})_{1 \le i, i \le p}$ Latent variables : Z, A Unknown parameters : $\theta = (\pi, \gamma, \mu, \sigma)$ with $\pi = (\pi_q)$, $\gamma = (\gamma_{q_l})$, $\mu = (\mu_{q_l})$, $\sigma = (\sigma_{q_l})$, $q, l \in \{1, \dots Q\}$

we suppose that σ_0 is known $(\sigma_0 = 1)$

NSBM model

Mixture model :

Observations : $X = (X_{ii})_{1 \le i, i \le p}$ Latent variables : Z, A Unknown parameters : $\theta = (\pi, \gamma, \mu, \sigma)$ with $\pi = (\pi_q)$, $\gamma = (\gamma_{q1})$, $\mu = (\mu_{q1})$, $\sigma = (\sigma_{q1})$, $q, l \in \{1, \dots Q\}$ we suppose that σ_0 is known $(\sigma_0 = 1)$

- **•** Estimate the parameters θ and make clustering (recover the latent groups $=$ estimate Z)
- Estimate $A \in \{0,1\}^{p \times p} \Leftrightarrow$ infer the graph G by using $\hat{\theta}$ and \hat{Z} Multiple testing :

$$
H_{0,ij} : \underbrace{A_{ij} = 0}_{i \approx j} \quad \text{against} \quad H_{1,ij} : \underbrace{A_{ij} = 1}_{i \sim j}
$$

 $\text{NSBM} = \text{mixture model}$ with latent variables \rightarrow MLE can not be computed

- Variational Expectation Maximization (VEM) algorithm to estimate $\hat{\theta}$
	- $+$ MAP rule to estimate \overline{Z}
	- $+$ model selection to select the number of groups Q
- \bullet ICL_{ex}: Integrated complete-data log likelihood baysesian framework greedy algorithm for optimization in Z automatic estimation of the number of groups Q

ref: Côme and Latouche, 2015 in SBM model

- Start from a initial partition of the nodes in $Q_{\mu\nu}$ groups $(Q_{\mu\nu})$ large)
- For each node : move the node from its group to another group ?
- Criteria : integrated complete-data log likelihood ICL_{ex}
- Some groups become empty
- \bullet At the end, we obtain a clustering of the nodes \ddot{Z} and an estimation of the number of groups \tilde{Q}

Estimation and clustering

Integrated complete-data log likelihood ICL_{ex} :

$$
ICL_{ex}(Z, A) := \log p(X, A, Z)
$$

=
$$
\log \left(\int_{\pi, \gamma, \mu, \sigma} p(X, A, Z | \pi, \gamma, \mu, \sigma) p(\pi, \gamma, \mu, \sigma) d(\pi, \gamma, \mu, \sigma) \right)
$$

- **•** Bayesian framework
- all the parameters in $\theta = (\pi, \gamma, \mu, \sigma)$ are integrated out
- conjugate priors for π, γ, μ, σ

 \Rightarrow analytical expression of ICL_{ex}, which involves the number of nodes in group q , the number of edges between groups q and $l...$

Greedy Algorithm:

- For each node *i**, we evaluate the variation $\Delta_{g\to h}$ of *ICL*_{ex} if i^* moves from its group g to a new group h .
- \bullet $\Delta_{g\rightarrow h}$ can be evaluated in a computationally efficient way

Greedy Algorithm:

- For each node *i**, we evaluate the variation $\Delta_{g\to h}$ of *ICL*_{ex} if i^* moves from its group g to a new group h .
- \bullet $\Delta_{g\rightarrow h}$ can be evaluated in a computationally efficient way
- Difference with Côme and Latouche in the SBM : A is latent \rightarrow we estimate the posterior probability that there is an edge between i and j

 \hookrightarrow depends on Z and θ that are estimated at each step of the algorithm

 \rightarrow estimator of θ have the form of traditional ML estimators with weighted means

Greedy Algorithm:

- For each node *i**, we evaluate the variation $\Delta_{g\to h}$ of *ICL*_{ex} if i^* moves from its group g to a new group h .
- \bullet $\Delta_{g\rightarrow h}$ can be evaluated in a computationally efficient way
- Difference with Côme and Latouche in the SBM : A is latent \rightarrow we estimate the posterior probability that there is an edge between i and j

 \hookrightarrow depends on Z and θ that are estimated at each step of the algorithm

 \rightarrow estimator of θ have the form of traditional ML estimators with weighted means

• At the end : merge groups ?

Greedy Algorithm:

- For each node *i**, we evaluate the variation $\Delta_{g\to h}$ of *ICL*_{ex} if i^* moves from its group g to a new group h .
- \bullet $\Delta_{g\rightarrow h}$ can be evaluated in a computationally efficient way
- Difference with Côme and Latouche in the SBM : A is latent \hookrightarrow we estimate the posterior probability that there is an edge between i and j
	- \hookrightarrow depends on Z and θ that are estimated at each step of the algorithm
	- \rightarrow estimator of θ have the form of traditional ML estimators with weighted means
- At the end : merge groups ?

Output : node clustering \hat{Z} , number of groups \hat{Q} , estimator $\hat{\theta}$

Graph inference

Aim : infer the adjacency matrix $A \in \{0,1\}^{p \times p} \Leftrightarrow$ infer graph edges

Simultaneous test of :
$$
H_{0,ij}
$$
 : $\underbrace{A_{ij} = 0}_{i \approx j}$ against $H_{1,ij}$: $\underbrace{A_{ij} = 1}_{i \sim j}$

Graph inference

Aim : infer the adjacency matrix $A \in \{0,1\}^{p \times p} \Leftrightarrow$ infer graph edges

Simultaneous test of : $H_{0,ij}$: $A_{ij}=0$ $\;$ against $\;$ $H_{1,ij}$: $A_{ij}=1$ $\overrightarrow{ }$ $\overrightarrow{ }$ $\overrightarrow{ }$ i≁j $\sum_{i \sim i}$ i∼j

 ℓ -values. (also called the local FDR. Efron, 2001)

$$
\ell_{ij}(X,Z;\theta) = \mathbb{P}_{\theta}(A_{ij} = 0 | X,Z)
$$

- \bullet $\ell_{ii}(X, Z; \theta)$ calculated in the NSBM with Bayes formula
- Reject $H_{0,ii}$ when $\ell_{ii}(X, Z; \theta) \leq t$
- Control of the FDR : proportion of errors among the discovered edges
	- \hookrightarrow threshold t such that the **FDR** is controlled at level α .

Graph inference

• Threshold t such that the MFDR is controlled at level α .

$$
MFDR_{\theta}(t) = \frac{\mathbb{E}[nb \text{ of falsely detected edges}]}{\mathbb{E}[nb \text{ of detected edges}]}
$$

MFDR_{\theta}(t) explicitly calculated

- Choose largest threshold t such that $\text{MFDR}_{\theta}(t) \leq \alpha$
- $t = t_{\theta}(\alpha)$ generalized inverse of MFDR $_{\theta}$ en α .

Graph inference

• Threshold t such that the MFDR is controlled at level α .

$$
MFDR_{\theta}(t) = \frac{\mathbb{E}[nb \text{ of falsely detected edges}]}{\mathbb{E}[nb \text{ of detected edges}]}
$$

MFDR_{\theta}(t) explicitly calculated

- Choose largest threshold t such that $\text{MFDR}_{\theta}(t) \leq \alpha$
- $t = t_{\theta}(\alpha)$ generalized inverse of MFDR_{θ} en α .

qvalues. (Storey, 2003)

$$
q_{ij}(X, Z; \theta) = \text{MFDR}_{\theta}(\ell_{ij}(X, Z; \theta))
$$

 \bullet Decision rule : Reject $H_{0,ii}$ provided that

$$
q_{ij}(X,Z;\theta)\leq \alpha
$$

Algorithm 1: Estimation and Graph inference in NSBM

Input: X , level α Apply greedy algorithm to get $\widehat{\theta}$ and \widehat{Z} Compute the q-values $q_{ij}(X,\widehat{Z},\widehat{\theta})$ Output: Infer a graph

$$
\widehat{A_{ij}} = \mathbb{1}\{q_{ij}(X,\widehat{Z},\widehat{\theta}) \leq \alpha\}
$$

[GGM inference](#page-2-0)

[NSBM model](#page-18-0)

[Our Procedure](#page-35-0)

[Simulations](#page-37-0)

Our Procedure

[GGM inference](#page-2-0)

[NSBM model](#page-18-0)

[Our Procedure](#page-35-0)

[Simulations](#page-37-0)

Simulations

Different graph structures:

25/32

Simulations

- **.** Different GGM inference methods:
	- test statistics provided by the package SILGGM :

without and with our procedure

- Glasso procedure
- Meinshausen and Bühlmann procedure

Simulations

- **O** Different GGM inference methods:
	- test statistics provided by the package SILGGM :

without and with our procedure

- Glasso procedure
- Meinshausen and Bühlmann procedure
- Estimation of the FDP and the power with 200 Simulations
	- $FDP =$ proportion of errors among the edges declared significant
	- TDP (power) $=$ the proportion of edges declared significant among the true edges

Simulations

- **O** Different GGM inference methods:
	- test statistics provided by the package SILGGM :

without and with our procedure

- Glasso procedure
- Meinshausen and Bühlmann procedure
- Estimation of the FDP and the power with 200 Simulations
	- $FDP =$ proportion of errors among the edges declared significant
	- TDP (power) $=$ the proportion of edges declared significant among the true edges

$$
n = 100, p = 200, \alpha = 0.1
$$

[GGM inference](#page-2-0) [NSBM model](#page-18-0) [Our Procedure](#page-35-0) [Simulations](#page-37-0)

Real data

- - flow cytometry data produced by Sachs et al.
- quantitative amounts of 11 proteins measured in 902 cells.
	- \bullet Inference with the full dataset (LiuL's test statistics, $\alpha = 0.05$

Real data

• Subsampling to test performance of our procedure

Number of times the 10 edges are detected over 200 simulations

Take-home message

- • Inference in the NSBM :
	- faster alternative to the VEM algorithm
	- automatic selection of the number of groups
- Application to graph inference in GGM - use test statistics proposed in the literature on GGM as entries of our procedure
- Simulations
	- almost control in term of FDR on the inferred graph
	- increase in power
- Real dataset ?

References

- Côme, Latouche. Model selection and clustering in stochastic block models with the exact integrated complete data likelihood. Statistical Modelling 2015
- Rebafka, Roquain, Villers. Powerful multiple testing of paired null hypotheses using a latent graph model. EJS 2022
- Liu. Gaussian graphical model estimation with false discovery rate control. AoS 2013
- Ren, Sun, Zhang, Zhou. Asymptotic normality and optimalities in estimation of large gaussian graphical models. Aos 2015
- Jankova, Van de Geer. Inference in high-dimensional graphical models. Handbook of Graphical Models 2018.
- Sachs, Perez,Pe'er, Lauffenburger, Nolan. Causal protein signaling networks derived from multiparameter single-cell data. Science 2005