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Data

Biological data :

gene expression data

or quantitative amounts of proteins

p = number of entities (genes, proteins)
n = number of repeating observations

Aim : infer the direct links between entities ⇔ infer a graph:
- nodes = entities (genes, proteins)
- edge = direct relation between two entities

regulations between genes

protein-protein interactions
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Gaussian Graphical model (GGM)

random variables Y1, . . . ,Yp : expression of the p genes or proteins

Assumption GGM : (Y1, . . .Yp) ∼ N (0,Σ)

Direct links

Denote Ω = Σ−1 = (wij)1≤i ,j≤p : precision matrix

i ∼ j (edge between i and j) ⇔ corr(Yi ,Yj |(Yk)k ̸=i ,j) ̸= 0

⇔ ωij ̸= 0
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Graph inference in GGM

Inference of the graph edges based on a n-sample of (Y1, . . .Yp)
High-dimensional setting : p ≫ n

Literature:

infer the precision matrix Ω (glasso)

infer the neighboors of each node (Meinshausen Bühlmann)

multiple-testing approach H0,ij : wij = 0 against H1,ij : wij ̸= 0

Inference is difficult:
- lack of power
- graph inferred can be different according to the method
- in general, no control on the inferred graph
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Multiple-testing approach

H0,ij : wij = 0︸ ︷︷ ︸
i≁j

against H1,ij : wij ̸= 0︸ ︷︷ ︸
i∼j

Test statistics ?

if p ≪ n : natural test statistics based on the inverse of the
sample covariance matrix Σ̂

in high-dimensional setting :
Ref: Liu et al 2013, Ren et al 2015, Jankova et al 2018

• estimators for the entries of the precision matrix wij

• based on different modifications of initial Lasso-regularized
estimators

• proved to be asymptotically normal a sparcity condition
• enables the construction of test statistics to test H0,ij

Simultaneous tests: test H0,ij for all pairs of variables (i , j).
↪→ multiple testing problem
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Aim

Inference of the graph : detect significant edges

with control on the inferred graph in term of False Discovery
Rate (FDR: proportion of errors among the discovered edges)

• (Bonferroni)
• Benjamini and Hochberg
• Liu et al 2013: asymtotic FDR control under sparcity

assumption

with high ability to detect true edges
• multiple testing literature : Ref: Efron & al, 2001, Efron,

2004, Sun & Cai, 2007, Cai & Sun, 2009, Sun & Cai, 2009
• incorporating some latent dependence structure may allow

more detections
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incorporating some latent structure ?

Graph to infer
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pairs of variables (i , j)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

learning the graph structure (nodes clustering)

incorporating it in the multiple-testing procedure
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learning the graph structure ?

↪→ modeling the graph structure through the adjacency matrix A

Adjacency matrix A of a graph

A = (Aij)1≤i ,j≤p with

Aij =

{
1 if there is an edge between i and j : i ∼ j
0 otherwise : i ≁ j

1

2

3

4

5


0 0 1 0 0
0 0 1 1 0
1 1 0 1 0
0 1 1 0 0
0 0 0 0 0



↪→ random graph model on A
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random graph model on A : stochastic block model SBM
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Graph to infer

⇐⇒
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data matrix
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A ∈ {0, 1}p×p

Or A is unknown → NSBM model : Noisy SBM

Observed:

X = Noisy version of A
X : (p, p) matrix

with Xij : test statistic
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Estimation of the parameters of the model (nodes clustering)

Multiple-testing procedure incorporating the estimated
parameters

H0,ij : Aij = 0︸ ︷︷ ︸
i≁j

against H1,ij : Aij = 1︸ ︷︷ ︸
i∼j
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SBM
Stochastic Block Model - SBM

Each node belongs to one of Q latent groups.
Latent variables Z1, . . . ,Zp i.i.d. with values {1, . . . ,Q} and
probability πq = P(Z1 = q)

Conditionally on Z , the variables Aij are independent Bernoulli
variables with parameters characterized by latent groups :

Aij |(Zi = q,Zj = l) ∼ Bernoulli(γq,l)

12/32



GGM inference NSBM model Our Procedure Simulations

Model

Noisy Stochastic Block Model - NSBM

NSBM

The true underlying binary graph A is a SBM
• with Q groups
• connectivity parameters γ = (γq,l)1≤q,l≤Q

• group proportions π = (πq)1≤q≤Q

• latent variables Zi ∈ {1, . . . ,Q} for i = 1, . . . , p

Conditionally on A and Z , the observations Xij are
independent with

Xij |Z ,A ∼
{

N (0, σ2
0) if Ai ,j = 0 (if i ≁ j)

N (µql , σ
2
ql) if Ai ,j = 1 (if i ∼ j),Zi = q,Zj = l
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NSBM model
Mixture model :
Observations : X = (Xij)1≤i ,j≤p

Latent variables : Z ,A
Unknown parameters : θ = (π, γ, µ, σ)

with π = (πq), γ = (γql), µ = (µql), σ = (σql) q, l ∈ {1, . . .Q}
we suppose that σ0 is known (σ0 = 1)

Estimate the parameters θ and make clustering (recover the
latent groups = estimate Z )

Estimate A ∈ {0, 1}pxp ⇔ infer the graph G by using θ̂ and Ẑ
Multiple testing :

H0,ij : Aij = 0︸ ︷︷ ︸
i≁j

against H1,ij : Aij = 1︸ ︷︷ ︸
i∼j
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Estimation and clustering

NSBM = mixture model with latent variables → MLE can not be
computed

Variational Expectation Maximization (VEM) algorithm to
estimate θ̂
+ MAP rule to estimate Z
+ model selection to select the number of groups Q

ICLex : Integrated complete-data log likelihood
baysesian framework
greedy algorithm for optimization in Z
automatic estimation of the number of groups Q
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Estimation and clustering

ref: Côme and Latouche, 2015 in SBM model

Start from a initial partition of the nodes in Qup groups (Qup

large)

For each node : move the node from its group to another
group ?

Criteria : integrated complete-data log likelihood ICLex

Some groups become empty

At the end, we obtain a clustering of the nodes Ẑ and an
estimation of the number of groups Q̂

16/32



GGM inference NSBM model Our Procedure Simulations

Estimation and clustering

Integrated complete-data log likelihood ICLex :

ICLex(Z ,A) : = log p(X ,A,Z )

= log

(∫
π,γ,µ,σ

p(X ,A,Z |π, γ, µ, σ)p(π, γ, µ, σ)d(π, γ, µ, σ)
)

Bayesian framework

all the parameters in θ = (π, γ, µ, σ) are integrated out

conjugate priors for π, γ, µ, σ

⇒ analytical expression of ICLex , which involves the number of
nodes in group q, the number of edges between groups q and l ...
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Estimation and clustering

Greedy Algorithm:

For each node i∗, we evaluate the variation ∆g→h of ICLex if
i∗ moves from its group g to a new group h.

∆g→h can be evaluated in a computationally efficient way

Difference with Côme and Latouche in the SBM : A is latent
↪→ we estimate the posterior probability that there is an edge
between i and j
↪→ depends on Z and θ that are estimated at each step of the
algorithm
↪→ estimator of θ have the form of traditional ML estimators
with weighted means

At the end : merge groups ?

Output : node clustering Ẑ , number of groups Q̂, estimator θ̂
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Difference with Côme and Latouche in the SBM : A is latent
↪→ we estimate the posterior probability that there is an edge
between i and j
↪→ depends on Z and θ that are estimated at each step of the
algorithm
↪→ estimator of θ have the form of traditional ML estimators
with weighted means

At the end : merge groups ?
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Graph inference

Aim : infer the adjacency matrix A ∈ {0, 1}pxp ⇔ infer graph
edges

Simultaneous test of : H0,ij : Aij = 0︸ ︷︷ ︸
i≁j

against H1,ij : Aij = 1︸ ︷︷ ︸
i∼j

ℓ-values. (also called the local FDR. Efron, 2001)

ℓij(X ,Z ; θ) = Pθ(Aij = 0 | X ,Z )

ℓij(X ,Z ; θ) calculated in the NSBM with Bayes formula

Reject H0,ij when ℓij(X ,Z ; θ) ≤ t

Control of the FDR : proportion of errors among the
discovered edges
↪→ threshold t such that the FDR is controlled at level α.
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Graph inference

Threshold t such that the MFDR is controlled at level α.

MFDRθ(t) =
E[nb of falsely detected edges]

E[nb of detected edges]

MFDRθ(t) explicitly calculated

Choose largest threshold t such that MFDRθ(t) ≤ α

t = tθ(α) generalized inverse of MFDRθ en α.

qvalues. (Storey, 2003)

qij(X ,Z ; θ) = MFDRθ(ℓij(X ,Z ; θ))

Decision rule : Reject H0,ij provided that

qij(X ,Z ; θ) ≤ α
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Algorithm 1: Estimation and Graph inference in NSBM

Input: X , level α
Apply greedy algorithm to get θ̂ and Ẑ
Compute the q-values qij(X , Ẑ , θ̂)
Output: Infer a graph

Âij = 1{qij(X , Ẑ , θ̂) ≤ α}
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Our Procedure

Gene
expression

data

p genes
n samples

Test
Statistics

Xij
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Algorithm 1
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Simulations
Different graph structures:

hub SBM

band scale−free

25/32



GGM inference NSBM model Our Procedure Simulations

Simulations

Different GGM inference methods:
- test statistics provided by the package SILGGM :

without and with our procedure
- Glasso procedure
- Meinshausen and Bühlmann procedure

Estimation of the FDP and the power with 200 Simulations

FDP = proportion of errors among the edges declared
significant

TDP (power)= the proportion of edges declared significant
among the true edges

n = 100, p = 200, α = 0.1
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hub SBM band scale−free
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Real data
- flow cytometry data produced by Sachs et al.
- quantitative amounts of 11 proteins measured in 902 cells.

Inference with the full dataset (LiuL’s test statistics,
α = 0.05)

Raf Mek1/2

PLCg

PIP2

PIP3

Erk1/2

Akt

PKAPKC

p38

JNK
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Real data

Subsampling to test performance of our procedure

n=10

edge LiuL LiuL NSBM

Raf - Mek1/2 178 187
PLCg - PIP2 18 39
PLCg - PIP3 57 94
PIP2 - PIP3 114 147
Erk1/2 - Akt 178 185
Erk1/2 - PKA 14 43
Akt - PKA 44 79
PKC - p38 95 117
PKC - JNK 69 96
p38 - JNK 70 100

Number of times the 10 edges are detected over 200 simulations
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Take-home message

Inference in the NSBM :
- faster alternative to the VEM algorithm
- automatic selection of the number of groups

Application to graph inference in GGM
- use test statistics proposed in the literature on GGM as
entries of our procedure

Simulations
- almost control in term of FDR on the inferred graph
- increase in power

Real dataset ?
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