An Introduction to Structural Causal Models

Alexander Reisach 15.11.2023

Université Paris Cité Laboratoire MAP5

Why Structural Causal Models?

Causality

I will try to convince you that those things are fundamentally different.

- 1. Prediction
- 2. Prediction under intervention
- 3. (Prediction of Counterfactuals)

An **intervention** is the act of changing a component of an otherwise closed system from the outside.

Causality is all about finding asymmetries in the relationship between variables that relate to interventions.

Confounder Bias

Motivating Example 1: Confounder Bias

Motivating Example 1: Confounder Bias

Motivating Example 1: Confounder Bias

Confounding bias

The relationship between intervention and outcome may be distorted by a confounding variable. Conditioning on the confounder removes the distortion. Let X, Y be random variables and x, y values in their respective domain.

- Target of prediction: $\mathbb{E}[Y \mid X]$
- Target of causal inference: 𝔼 [Y | do (X = x)]

Let X, Y be random variables and x, y values in their respective domain.

- Target of prediction: $\mathbb{E}[Y \mid X]$
- Target of causal inference: $\mathbb{E} [Y | do(X = x)]$

Confounder scenario:

 $egin{aligned} & \mathcal{W} &:= \mathcal{N}_{\mathcal{W}} \ (extsf{Wealth}) \ & X &:= \mathcal{W} + \mathcal{N}_{X} \ (extsf{Medication}) \ & Y &:= \mathcal{W} + \mathcal{N}_{Y} \ (extsf{Health}) \end{aligned}$

with $N_X, N_Y \sim \mathcal{N}(0, 1)$ independently, and $N_W \sim \text{Bern}(0.1)$. **Figure 2:** Structural Causal Model (SCM)

Confounder Bias - Simulation

What is $\mathbb{E}[Y \mid do(X = x)]$?

In our confounder example, we have that

$$\mathbb{E}\left[Y \mid X\right] \neq \mathbb{E}\left[Y \mid do\left(X = x\right)\right].$$

Controlling for \boldsymbol{W} removes the bias, and

$$\mathbb{E}_{W} [\mathbb{E} [Y \mid X, W]] \\= \mathbb{E} [Y \mid X, W = 0] P(W = 0) + \mathbb{E} [Y \mid X, W = 1] P(W = 1) \\= \mathbb{E} [Y \mid do (X = x)].$$

Collider Bias

Motivating Example 2: Collider Bias

Motivating Example 2: Collider Bias

Motivating Example 2: Collider Bias

Collider bias

Conditioning on the collider may result in a spurious relationship where really there is none.

Let X, Y be random variables and x, y values in their respective domain.

- Target of prediction: $\mathbb{E}[Y \mid X]$
- Target of causal inference: $\mathbb{E}[Y \mid do(X = x)]$

Let X, Y be random variables and x, y values in their respective domain.

- Target of prediction: $\mathbb{E}[Y \mid X]$
- Target of causal inference: $\mathbb{E}[Y \mid do(X = x)]$

Collider scenario:

$$\begin{split} & X := N_X \text{ (Skill)} \\ & Y := N_Y \text{ (Height)} \\ & \text{NBA} := \begin{cases} 1 & \text{if } 2X + 2Y + N_{\text{NBA}} > 3 \\ 0 & \text{otherwise,} \end{cases} \\ & \text{with } N_X, N_Y, N_{\text{NBA}} \sim \mathcal{N}(0, 1) \text{ iid.} \end{cases} \\ & \text{Figure 3: Structural Causal Model (SCM)} \end{split}$$

What is $\mathbb{E}[Y \mid X]$?

What happens if we control for NBA? In other words, what is $\mathbb{E}_{NBA} [\mathbb{E} [Y | X, NBA]]$?

Controlling for NBA gives

 $\mathbb{E}_{\mathsf{NBA}} \left[\mathbb{E} \left[Y \mid X, \mathsf{NBA} \right] \right] = \mathbb{E} \left[Y \mid X, \mathsf{NBA} = 0 \right] P(\mathsf{NBA} = 0) + \\ \mathbb{E} \left[Y \mid X, \mathsf{NBA} = 1 \right] P(\mathsf{NBA} = 1).$ What are $\mathbb{E} \left[Y \mid X, \mathsf{NBA} = 0 \right]$ and $\mathbb{E} \left[Y \mid X, \mathsf{NBA} = 1 \right]$?

What is $\mathbb{E}[Y \mid do(X = x)]$?

Controlling (Adjusting) for a Variable

In our collider example, we have that

$$\mathbb{E}\left[Y \mid X\right] = \mathbb{E}\left[Y \mid do\left(X = x\right)\right].$$

Controlling for NBA introduces bias, meaning that

 $\mathbb{E}_{\mathsf{NBA}}\left[\mathbb{E}\left[Y \mid X, \mathsf{NBA}\right]\right] \neq \mathbb{E}\left[Y \mid \mathsf{do}\left(X=x\right)\right].$

(The opposite was true in the confounding case!)

Takeaway

We need to take the causal structure into account when estimating causal quantities. Causal Inference is all about finding valid sets of control variables (also called adjustment sets).

Structural Causal Models

A Structural Causal Model (SCM) is a triple (N, X, \mathcal{F}) where

- *N* is a set of exogenous random variables $\{N_1, N_2, \dots\}$
- X is a set of endogenous random variables {X₁, X₂,...}
- \$\mathcal{F}\$ is a set of functions \$\mathcal{F} = {f_{X_1}, f_{X_2}, ...}\$ defining an endogenous variable \$X_i\$ in terms of \$N_i\$ and other endogenous variables \$X_{-i}\$.

The causal relationships between variables in an SCM can be encoded in a directed acyclic graph (DAG) $\mathcal{G}(X, E)$ where an edge $X_i \rightarrow X_j$ exists if and only if X_j is a function of X_i in \mathcal{F} .

Examples

Let $N_1, N_2, N_3 \sim \mathcal{N}(0, 1)$ iid.

 $\begin{array}{lll} X_1 := N_1 & X_1 := X_3 + N_1 & X_1 := N_1 \\ X_2 := N_2 & X_2 := X_3 + N_2 & X_2 := X_1 + N_2 \\ X_3 := X_1 + X_2 + N_3 & X_3 := N_3 & X_3 := X_2 + N_3 \end{array}$

The causal relationships between variables in an SCM can be encoded in a directed acyclic graph (DAG) $\mathcal{G}(X, E)$ where an edge $X_i \rightarrow X_j$ exists if and only if X_j is a function of X_i in \mathcal{F} .

Examples

Let $N_1, N_2, N_3 \sim \mathcal{N}(0, 1)$ iid.

 $\begin{array}{lll} X_1 := N_1 & X_1 := X_3 + N_1 & X_1 := N_1 \\ X_2 := N_2 & X_2 := X_3 + N_2 & X_2 := X_1 + N_2 \\ X_3 := X_1 + X_2 + N_3 & X_3 := N_3 & X_3 := X_2 + N_3 \end{array}$

$$X_1 \rightarrow X_3 \leftarrow X_2$$

The causal relationships between variables in an SCM can be encoded in a directed acyclic graph (DAG) $\mathcal{G}(X, E)$ where an edge $X_i \rightarrow X_j$ exists if and only if X_j is a function of X_i in \mathcal{F} .

Examples

Let $N_1, N_2, N_3 \sim \mathcal{N}(0, 1)$ iid.

 $\begin{array}{lll} X_1 := N_1 & X_1 := X_3 + N_1 & X_1 := N_1 \\ X_2 := N_2 & X_2 := X_3 + N_2 & X_2 := X_1 + N_2 \\ X_3 := X_1 + X_2 + N_3 & X_3 := N_3 & X_3 := X_2 + N_3 \end{array}$

 $X_1
ightarrow X_3 \leftarrow X_2 \qquad X_1 \leftarrow X_3
ightarrow X_2$

The causal relationships between variables in an SCM can be encoded in a directed acyclic graph (DAG) $\mathcal{G}(X, E)$ where an edge $X_i \rightarrow X_j$ exists if and only if X_j is a function of X_i in \mathcal{F} .

Examples

Let $N_1, N_2, N_3 \sim \mathcal{N}(0, 1)$ iid.

 $\begin{array}{lll} X_1 := N_1 & X_1 := X_3 + N_1 & X_1 := N_1 \\ X_2 := N_2 & X_2 := X_3 + N_2 & X_2 := X_1 + N_2 \\ X_3 := X_1 + X_2 + N_3 & X_3 := N_3 & X_3 := X_2 + N_3 \end{array}$

 $oldsymbol{X}_1
ightarrow oldsymbol{X}_3 \leftarrow oldsymbol{X}_2 \qquad oldsymbol{X}_1 \leftarrow oldsymbol{X}_3
ightarrow oldsymbol{X}_2 \qquad oldsymbol{X}_1
ightarrow oldsymbol{X}_2
ightarrow oldsymbol{X}_3
ightarrow oldsymbol{X}_2
ightarrow oldsymbol{X}_1
ightarrow oldsymbol{X}_2
ightarrow$

Utilizing Directed Acyclic Graphs (DAGs)

Assume we have a causal model (N, X, \mathcal{F}) with DAG $\mathcal{G}(X, E)$. We say the DAG has the **causal Markov property** if the joint probability distribution *P* factorizes according to the DAG:

$$P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid \mathsf{Pa}_{\mathcal{G}}(X_i)),$$

where $Pa_{\mathcal{G}}(X_i)$ denotes the parents (direct causes) of X_i in \mathcal{G} .

Takeaway

Every variable is independent of all others given its parents in the causal DAG.

Finding Variables to Control For

Valid Sets of Control Variables (Adjustment Sets)

An adjustment set $\mathcal{A} \subset X$ is valid for estimating the causal effect of X_i on X_j if

$$\mathbb{E}\left[X_{j} \mid do\left(X_{i}=x\right)\right] = \mathbb{E}_{\mathcal{A}}\left[\mathbb{E}\left[X_{j} \mid X_{i}, \mathcal{A}\right]\right].$$

In general, an adjustment set is valid if it blocks all 'backdoor paths' from X_i to X_j .

Backdoor Paths

A backdoor path is an undirected path from X_i to X_j starting with an edge pointing into X_i , that does not contain any collider (structure of the form $X_1 \rightarrow X_2 \leftarrow X_3$, with X_2 being the collider).

Due to the causal Markov property, we know that $Pa_{\mathcal{G}}(X_i)$ is a valid adjustment set for estimating the causal effect of X_i on X_j .

Backdoor Paths Example

What should we control for when estimating the causal effect $\mathbb{E}[X_2 \mid do(X_1 = x)]$?

Backdoor Paths Example

What should we control for when estimating the causal effect $\mathbb{E}[X_2 \mid do(X_1 = x)]$?

Any one or combination of X_4, X_5, X_6 is a valid adjustment set. For example: $\mathbb{E}[X_2 \mid do(X_1 = x)] = \mathbb{E}_{X_4}[\mathbb{E}[X_2 \mid X_1, X_4]].$

Backdoor Paths Example

What should we control for when estimating the causal effect $\mathbb{E} [X_2 \mid do (X_1 = x)]?$

Any one or combination of X_4, X_5, X_6 is a valid adjustment set. For example: $\mathbb{E}[X_2 \mid do(X_1 = x)] = \mathbb{E}_{X_4}[\mathbb{E}[X_2 \mid X_1, X_4]].$

Finding valid adjustment sets can be done algorithmically using the DAG, meaning that we can automate the process of identifying causal effects once we know the DAG underlying the SCM.

Summary Roadmap of Causal Reasoning

- 1. Experiments or Observation \rightarrow Data May be costly, infeasible, or unethical
- Expert Knowledge or Causal Discovery → SCM, DAG Requires domain expertise or strong assumptions
- Causal Inference → Causal Estimates Relies on the first two steps

- Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.
- Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
 Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, 2017.

Causal Inference Course by Brady Neal: https://www.bradyneal.com/causal-inference-course

- Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.
- Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
 Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, 2017.

Causal Inference Course by Brady Neal: https://www.bradyneal.com/causal-inference-course

Thank you for your attention!