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Why Structural Causal Models?



Causality

I will try to convince you that those things are fundamentally
different.

1. Prediction
2. Prediction under intervention
3. (Prediction of Counterfactuals)

An intervention is the act of changing a component of an
otherwise closed system from the outside.

Causality is all about finding asymmetries in the relationship
between variables that relate to interventions.

CLOUD-RAIN→
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Confounder Bias



Motivating Example 1: Confounder Bias

Medication
HEARTBEAT

Health
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Motivating Example 1: Confounder Bias
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Confounding bias
The relationship between intervention and outcome may be distorted
by a confounding variable. Conditioning on the confounder removes
the distortion.
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Confounding Bias - Formalization

Let X ,Y be random variables and x , y values in their respective
domain.

• Target of prediction: E [Y | X ]

• Target of causal inference: E [Y | do (X = x)]

Confounder scenario:

W := NW (Wealth)
X := W + NX (Medication)
Y := W + NY (Health)

with NX ,NY ∼ N (0, 1) independently, and NW ∼ Bern(0.1).

Figure 2: Structural Causal Model (SCM)
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Confounder Bias - Simulation
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What is E [Y | do (X = x)]?
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Controlling (Adjusting) for a Variable

In our confounder example, we have that

E [Y | X ] 6= E [Y | do (X = x)] .

Controlling for W removes the bias, and

EW [E [Y | X ,W ]]

=E [Y | X ,W = 0]P(W = 0) + E [Y | X ,W = 1]P(W = 1)
=E [Y | do (X = x)] .
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Collider Bias



Motivating Example 2: Collider Bias
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Motivating Example 2: Collider Bias

Skill

ARROWS-ALT-V
Height

Collider bias
Conditioning on the collider may result in a spurious relationship
where really there is none.
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Collider Bias - Formalization

Let X ,Y be random variables and x , y values in their respective
domain.

• Target of prediction: E [Y | X ]

• Target of causal inference: E [Y | do (X = x)]

Collider scenario:

X := NX (Skill)
Y := NY (Height)

NBA :=

1 if 2X + 2Y + NNBA > 3
0 otherwise,

with NX ,NY ,NNBA ∼ N (0, 1) iid.

Figure 3: Structural Causal Model (SCM)
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Collider Bias - Simulation
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Collider Bias - Simulation
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What happens if we control for NBA?
In other words, what is ENBA [E [Y | X ,NBA]]?
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Collider Bias - Simulation
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ENBA [E [Y | X ,NBA]] =E [Y | X ,NBA = 0]P(NBA = 0)+
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Collider Bias - Simulation
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Controlling (Adjusting) for a Variable

In our collider example, we have that

E [Y | X ] = E [Y | do (X = x)] .

Controlling for NBA introduces bias, meaning that

ENBA [E [Y | X ,NBA]] 6= E [Y | do (X = x)] .

(The opposite was true in the confounding case!)

Takeaway
We need to take the causal structure into account when estimating
causal quantities. Causal Inference is all about finding valid sets of
control variables (also called adjustment sets).
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Structural Causal Models



Structural Causal Models

A Structural Causal Model (SCM) is a triple (N,X ,F) where

• N is a set of exogenous random variables {N1,N2, . . . }
• X is a set of endogenous random variables {X1,X2, . . . }
• F is a set of functions F = {fX1 , fX2 , . . . } defining an

endogenous variable Xi in terms of Ni and other endogenous
variables X−i .
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SCMs and Directed Acyclic Graphs

The causal relationships between variables in an SCM can be
encoded in a directed acyclic graph (DAG) G(X ,E) where an edge
Xi → Xj exists if and only if Xj is a function of Xi in F .

Examples
Let N1,N2,N3 ∼ N (0, 1) iid.

X1 := N1

X2 := N2

X3 := X1 + X2 + N3

X1 := X3 + N1

X2 := X3 + N2

X3 := N3

X1 := N1

X2 := X1 + N2

X3 := X2 + N3

X1 → X3 ← X2 X1 ← X3 → X2 X1 → X2 → X3
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Utilizing Directed Acyclic Graphs
(DAGs)



DAGs and Joint Probability Distributions

Assume we have a causal model (N,X ,F) with DAG G(X ,E).

We say the DAG has the causal Markov property if the joint
probability distribution P factorizes according to the DAG:

P(X1,X2, . . . ,Xn) =
n∏

i=1
P(Xi | PaG(Xi)),

where PaG(Xi) denotes the parents (direct causes) of Xi in G.

Takeaway
Every variable is independent of all others given its parents in the
causal DAG.
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Finding Variables to Control For

Valid Sets of Control Variables (Adjustment Sets)
An adjustment set A ⊂ X is valid for estimating the causal effect
of Xi on Xj if

E [Xj | do (Xi = x)] = EA [E [Xj | Xi ,A]] .

In general, an adjustment set is valid if it blocks all ‘backdoor
paths’ from Xi to Xj .

Backdoor Paths
A backdoor path is an undirected path from Xi to Xj starting with
an edge pointing into Xi , that does not contain any collider
(structure of the form X1 → X2 ← X3, with X2 being the collider).

Due to the causal Markov property, we know that PaG(Xi) is a valid
adjustment set for estimating the causal effect of Xi on Xj . 19



Backdoor Paths Example

What should we control for when estimating the causal effect
E [X2 | do (X1 = x)]?

X1 X2

X4

X5 X6

X3

Any one or combination of X4,X5,X6 is a valid adjustment set.
For example: E [X2 | do (X1 = x)] = EX4 [E [X2 | X1,X4]].

Finding valid adjustment sets can be done algorithmically using the
DAG, meaning that we can automate the process of identifying
causal effects once we know the DAG underlying the SCM.
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Summary Roadmap of Causal Reasoning

1. Experiments or Observation → Data
May be costly, infeasible, or unethical

2. Expert Knowledge or Causal Discovery → SCM, DAG
Requires domain expertise or strong assumptions

3. Causal Inference → Causal Estimates
Relies on the first two steps

Are these SCMs in the room
with us right now?
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Further Reading

[1] Judea Pearl and Dana Mackenzie. The book of why: the
new science of cause and effect. Basic books, 2018.

[2] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
Elements of Causal Inference: Foundations and Learning
Algorithms. The MIT Press, 2017.

Causal Inference Course by Brady Neal:
https://www.bradyneal.com/causal-inference-course

Thank you for your attention!
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