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Our research question: why do we observe living
organisms...as they are?

I Central dogma of Molecular Biology:

DNA (≈ gene) → RNA (blueprint) → Protein (actor)

I ’Information flow’ about sequence determination (suffers limitations,
but mainly OK), not causal state(s) of the observed system

I Instead, in response to environmental conditions, molecular species
(DNA, RNA, protein, complexes) interact with each other to impact
(govern) the production (expression) of RNA and proteins. Whose
tasks can impact other molecules’ levels and/or observed system
behaviour and structure (phenotypes)

I Feedback loops exist between these different levels
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Modelling with Gene Regulatory Networks (GRN)

I Goal: decipher the causal information flow from genotypes to
phenotypes. Networks: ideal mathematical representations of these
regulatory relationships

I More specifically: describe celuular processes

I Ideally account for space and time scales (e.g. see VCell environment,
Resasco et al. 2012)

I Deterministic vs stochastic modelling?

I Practically: a model that predicts entities’ abundance
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Why simulating GRN?

I Real system (usually) unknown

I Yet, we have observations such systems via different omics data sets

I Computational methods are used to reconstruct GRNs from data →
GRN inference topic

I At least two useful frameworks for GRN simulations...
as long as they are plausible
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Usefulness of GRN simulation tools

1. Evaluate the ability of GRN inference methods to reconstruct a
complex system (structure) from observed data: “accuracy” of the
method(s); common pathway accross species; needed sample size;
signal-to-noise ratio feasibility; type of data: interventional vs
observational, temporal vs steady state, heterogeneous biological
entitites, missing observations, etc. → topic for Olivia’s talk

2. Predict the behaviour of a known system: from model checking (La
Rota et al. 2011) to predicting interventions (Bryce et al. 2010);
genomics prediction (Pérez-Enciso and Zingaretti 2019); therapeutic
targets (Ma et al. 2019, Fang et al. 2019); personalised medicine
(van der Wijst et al. 2018, Gawel et al. 2019).
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GRN simulations, Un inventaire à la Prévert
aka a laundry list, de Jong 2002 & Shmulevich and Dougherty 2007

I Directed (or undirected) graphs → useful mainly to represent
database knowledge

I Boolean (or logical) regulatory networks

I Coupled non-linear ordinary differential equations

I Bayesian networks

I Stochastic (Master) equation

I Note: some methods use prior information: global features, local
motifs, white-/black-lists...
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GRN simulations, Un inventaire à la Prévert
aka a laundry list, de Jong 2002 & Shmulevich and Dougherty 2007

I Directed (or undirected) graphs
I Boolean (or logical) regulatory networks
I Coupled non-linear ordinary differential equations

dxi
dt = fi(x), i = 1...p reflects production and degradation of all

species i; can include time-delay; PLDE result from sigmoid
approximations by step functions and allow a domain (linear)
qualitative analysis

I Bayesian networks
I Stochastic (Master) equation

I Note: some methods use prior information: global features, local
motifs, white-/black-lists...
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GRN simulations, Un inventaire à la Prévert
aka a laundry list, de Jong 2002 & Shmulevich and Dougherty 2007

I Directed (or undirected) graphs
I Boolean (or logical) regulatory networks
I Coupled non-linear ordinary differential equations → piecewise-linear

approximating equations or numerical methods
I Bayesian networks → P (X) =

∏
i P (Xi|Pa(Xi)) stochastic, but

implicit temporal dependency; dynamical Bayesian network still
require additional assumptions

I Stochastic (Master) equation

I Note: some methods use prior information: global features, local
motifs, white-/black-lists...
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Start with transcriptional regulations

I Transcriptional regulations

I And beyond...
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“All biological features great and small”

I Post-transcriptional regulations

I Impact of genetic mutations: affects rates, binding or product activity.

I Ploidy of the organism.
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1. Generating the network
mystsem <- createInSilicoSystem(G = 10, PC.p = 0.7)

All sorts of genes
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1. Generating the network
mystsem <- createInSilicoSystem(G = 10, PC.p = 0.7)

All sorts of genes

Creating the GRN

For each regulation class

(with a given degree distribution)
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1. Generating the network
mystsem <- createInSilicoSystem(G = 10, PC.p = 0.7)

All sorts of genes

plotGRN(mysystem)
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2. Creating genetically diverse in silico individuals
mypop <- createInSilicoPopulation(3, mysystem, ngenevariants = 5, ploidy

= 4)

...
(3 individuals, 5 maximum gene variants, ploidy of 4)
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2. Creating genetically diverse in silico individuals
plotMutations(mypop, mysystem)
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3. Generating the stochastic model and numerically solving
the Master equation
sim <- simulate(Parallel)InSilicoSystem(mysystem, mypop, simtime = 1000,

ntrials = 5)



r1 : DNA1 → DNA1 +RNA1

r2 : RNA1 → RNA1 + Prot1

r3 : DNA3 + Prot1 → DNAbound
3

r4 : DNA
bound
3 → DNA3 + Prot1

...

After init. & until convergence
(maximum simul. time)

1. sample time to next reaction τ

2. rates ri and concentrations(t)
⇒ propensities(t) for reactions
to occur during [t, t+ τ ]

3. Sample the next reaction
according to propensities

4. Update concentrations(t+ τ)
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3. Generating the stochastic model and numerically solving
the Master equation
sim$Simulation
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3. Generating the stochastic model and numerically solving
the Master equation
plotSimulation(sim$Simulation)
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Conclusion
What sismonr does

In three steps:

1. In silico system creation: genes & GRN

2. In silico individual creation: genetic mutation quantitative effects

3. Stochastic simulation of gene expressions for each individual

Full tutorial available at https://github.com/oliviaAB/sismonr and
sismonr (v2.1) on the CRAN at

https://cran.r-project.org/package=sismonr
(Angelin-Bonnet et al. 2020)
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Thank you so much for your attention.

Any questions?
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