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For the conservation of shorebirds

Which stopover sites should be protected in priority? ast Asian Australasian

* 50 millions of shorebirds migrate from Siberia to Australasia

* Migration is threatened by human developments along the migratory route

Coastal Development Sea Level Rise
‘,.'1',": Jicf:“ =

From Iwamura et al. 2013

Image: Nick Murray, University of
Queensland

But ... prioritising is difficult because only partial knowledge on the main routes



How to infer the most likely migratory routes ?

* Given that
* Monitoring flows is difficult
* Observed count data are imperfect (detection error)

inference
* A representation of possible migratory routes as a .

directed and weighted graph > ‘
* A Hidden Semi Markov Model of birds trajectories

and observed counts
* Adapted estimation algorithms

» We propose to combine networks and statistical



The BIRDNET HSMM model formally:

a discrete time multidimensional HSMM

Hidden variable: the state of each bird at each time step, among
* Being at site 1, ... |, flying towards a site, dead

Sojourn time at site i : Poisson(A,) r(i,i;)

Transition probabilities
* from ‘site i’ to ‘flying towards j’ : r(i,j)
* from ‘site i’ to ‘death’: r(i,death), assumed known
e from ‘flying towards j’ to ‘sitej’ : 1

Observed variable : noisy bird counts for some time steps and some sites : Poisson(N(i,t))

» Inferring the flyway network amounts to estimate the transition rates r(i,j)

» By product: estimation of the mean sojourn times A,



The BIRDNET HSMM model as a simulator

1. Simulate the hidden 2. Compute the exact 3. Simulate a noisy
trajectories using number of birds at version of the exact
- Sojourn time each site and each counts

- Transition rates time step
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How to estimate transition probabilities

(and sojourn times)?

BIRDNET model is easy to simulate but

likelihood is complex to optimize:
* hidden variables
* observations make bird trajectories
dependent !

Bird 1 P




How to estimate transition probabilities

(and sojourn times)?

BIRDNET model is easy to simulate but
likelihood is complex to optimize:
* hidden variables
* observations make bird trajectories
dependent !

Deterministic Simulation-based
algorithm algorithm
» Existing estimation tools reach their limits
Frequentist E Monte Carlo EM
estimation (MCEM)

» We explore several options for

approximate estimation Bayesian Variational Bayes EM ABC
estimation (VBEM)



) Outline

» A factorial Hidden semi markov model for modeling the
Australasian migration of birds

» MCEM Metropolis Hastings algorithm
> An ABC algorithm

> Experiments: Benchmarks + real data
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) Single bird semi-Markov trajectory model

» [ sites, T + 1 time steps (H = {0,..., T}).
» Bird n's (1 < n < N) trajectory uniquely defined by:

mo = (G, 88), (L t). o, (2, 2R,)). (1)

given that flight times (f;) are fixed and known.
tg is the arrival time at site i} € | U {death}.
tg=0<tf/<...<tg <T.

» Sojourn time model: t,f+1 -t —f = Tj, where:

Kik+1
_ _ (A’.k)dil 7)\,' _
P)\ik(Tik—d)—me k,Vd—1,2,... (2)
» Transition probabilities: R(i,j) > 0 iff i < j (no way back)
and pj =1— %, R(i,j) is the mortality rate in site /.
> Model parameters: (A;,);<; <; and (R(i,)))1<i<j<)-
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) Birds population’s trajectory model.

Single bird's trajectory m, semi-Markov model:

Fo—1
Pr)\ 71',, H R Ik7’k+1) P)\,, (T—tk+1 tk_ﬁfi,fﬂ)' (3)
k=0
Let M = {m1,...,mn} denote the set of trajectories of the N birds.

Since trajectories are independent, we have:

N Fp,—1
Pea () = TT T R (ivin) oy (7= o =t — fipi,,)
n=1 k=0

(SCIDYN
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) Birds population observation model

NE(M) is the number of birds located in site i at time t:

1

NE(M) = ‘{wneﬂ,ﬂke{O,...,Fn—l},ig:/

1

and tf <t <tgq—fi }|.

For a set 2 C | x H of observed site-times, the set of observations
is represented by a matrix O of observed bird counts, of size | x T:

O(i, t) = Of if (i,t) € Q and NA else (4)

The joint distribution of all the observations O = {O}} given the
trajectories is

poimy = J] Pa:(0 (5)

(i,t)eQ

where Py is a Poisson distribution of mean-variance NF.
1
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> Outline

» A factorial Hidden semi markov model for modeling the
Australasian migration of birds

» MCEM Metropolis Hastings algorithm
> An ABC algorithm

> Experiments: Benchmarks + real data
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> Expectation Maximization algorithm (1)

Our objective is to compute A*, the values of parameters which
maximize the likelihood of observations O (in fact, it is more
convenient to optimize the log-likelihood, which is equivalent):

AN = arg max log (PA(O)),

AT = argm/?xlog/P/\(O,l_I)dl_l.
n

(SCIDYN
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> Expectation Maximization algorithm (2)

The Expectation-Maximization algorithm is an iterative algorithm
that seeks to find an approximation of A* by iterating updates of
estimates of A* as follows:

Npew = arg m/ex Enllog (PA(M, 0)) | Aoid, O]

= arg m/ex/ log (PA(IT, O)) Pa,,,(N]O)d.
n

(SCIDYN
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> Expectation Maximization algorithm (3)

The following convenient notation is used for computations:
Q(/\|/\old) = / |0g(P/\(|_|, O)) P/\old(l'l|0)d|'|.
n

This gives the usual E-M representation of the algorithm:

» Expectation. Compute the quantities involving Ayiy in
Q(AINord)-
» Maximization. Compute

Npew = arg m/?x QN Aorg)-

(SCIDYN
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) Monte-Carlo Expectation Maximization

The Expectation step is intractable. Indeed, the domain of sets of
trajectories is too large.
Provided that we are able to simulate Py_,(1]O), the integral can
be approximated, leading to a Monte-Carlo version of EM:
» Generate M samples of the N bird trajectories,
{n@, .. ;N1 from Py, (M|O).
» Approximate Q(A|Aoy) with

Mz

QA Aoig) =

log (PA(N'™,0)) . (6)

m=1

> Compute Ape, as:
Apew = arg m/iax (:)(/\]/\o/d). (7)

In practice, steps (6) and (7) are grouped together, in order to
build a single optimization program defining update Ayl — NApew -

(SCIDYN
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) MCEM updates in Birdnet

> Generate {ﬂ(l),...,ﬂ(M)} from Py, (M]0).
> The r,-j-’ew are empirical frequencies:

new Zi\n/lzl ‘{Trn S I_I( )S t. Elk Ik = and Ik+1 _J}|
r _

Y M {me e N0 st Jk, il =i}

» The A7®" are obtained from empirical sojourn times:

S 1 2 mmentm 2ok<ry (tky1r =t — finip, M=y
Zm 1anen Ek<F,,]1{:k—z}

So, the hard part is to generate sample populations’ trajectories
from Pa,,(M|0).

)\I_'leW —
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) Metropolis-Hastings algorithm

Generation of M samples of the N bird trajectories,
N, ....nM1 from Py ,(MNO).
> A first sample M) is simulated using P, (M).
» For min {1,...,M —1}:
Every m; € M(™) is kept (with probability 1 — p) or
re-simulated according to Ph_,(-) (with probability p).
The result is IN.
> Rejection or acceptance of N according to a (M(™), N):

p(oln)

(m) —mi AR
a(NY™ M) = min{1, P(O|I'I(m))}

Select M(M™*Y) T with probability o (n(m>, n)

«— N with probability 1 — « <I'I(m), I'I)

p is the only parameter of the MH algorithm. p = 0.1 was chosen.

(SCIDYN
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) Take-away points of the MCEM approach

» MCEM updates given {I'I(l), ce H(M)} are easy (averaging)

> Getting simulation samples from Py_,([1|0) is hard =
Metropolis Hastings

» The algorithm is slow

> it is prone to degeneracy (if edge i — j unobserved in nm it
will never be observed again = hard coding of transition
probabilities lower bounds

We also tried ABC to overcome the degeneracy problem (and spare
computation time).

(SCIDYN
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) Outline

» A factorial Hidden semi markov model for modeling the
Australasian migration of birds

» MCEM Metropolis Hastings algorithm
> An ABC algorithm

> Experiments: Benchmarks + real data
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) Approximate Bayesian Computation

» Adaptive Population Monte Carlo Approximate Bayesian
Computation (Lenormand et al. 2012)

» Provides a distribution of parameter values, starting from
uniform priors

> lterative accept-reject algorithm, particle filter approach

» No computation of likelihood, relies on a distance p (default
behavior)

— O 2
p(x,0)= (o) = Os0)” x ~ f(x|N)  (8)

(s,t)€Q Y(s:t)

(SCIDYN
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) ABC initialization

1 Generate j =1,---, N particules from uniform prior
(optimized LHS) and evaluate them:
la Aj ~ 7(N) (generation)
1b xU) ~ f(x|A;) (simulation)
lc Using {xU }1<j<n compute the variance of statistics v(s 1)
(statistics ponderation, definition of p)
1d p; = p(xY), 0) (evaluation)
le wj =1 (particule weight)
2 Select subset of particules
2a Let € the a-quantile of {p;}1<j<n
2b Let {(Ai,wi, pi) hi<icna = {(Aj,wj, pj)lp; < €hr<jsn
2c Take 02 as twice the empirical variance of {(A;,w;i)}1<i<na

(SCIDYN
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) ABC iteration

1 Let current population be : {(Aj,wj, pi) }i<i<na
2 Generate new particules : {(Aj,wj, pj)} Nat1<j<n
2a (Aj|/\k) ~ N(/\k, 0’2) with
ke {l,---,Na} according probs. {w1, - ,wna}
2b pj = p(0,x) with x ~ f(x, ;)
m(A;)
SN (wa/ N wm)a (6L (A —A,))
3 Update population:

2c Wwj =

33 Pacc = N%Na ZJ-N:N(Hl 1,,<c (stopping criterion, proved to
converge towards 0)

3b Update € the a-quantile of {p,}1<p<n

3c Update {(Aj,wi, pi)ti<i<na = {(Ap, wps pp)lpp < €l1<pn

3d Take 02 as twice the empirical variance of {(A;,w;)}1<i<na

SCiDYN
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> Outline

» A factorial Hidden semi markov model for modeling the
Australasian migration of birds

» MCEM Metropolis Hastings algorithm
> An ABC algorithm

» Experiments: Benchmarks + real data
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>

Ll

Benchmark experiments settings

Migration graph structure with 4 to 10 nodes.

A maximal number of destination nodes per node ranging
from 2 to 4.

Mean sojourn time range is [1, 3] weeks. Five replicates by
structure settings (different mean sojourn time and transition
probabilities). The first replicate is designed with equiprobable
transitions and mean sojourn times of 2 weeks per node.

For each problem replicate, an observation matrix is simulated
and only a subset of week-site observations are kept for
estimation (100%, 70%, 50%).

300 estimations for both MCEM and ABC.

4 to 30 parameters to estimate by problem to solve.

(SCIDYN
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) Quantitative evaluation

» Likelihood evaluation:

P(O\/\):/HP(O\I‘I,/\)*P(I'I\/\)dI'I (9)
:/ P(O|M) = P(M|A)dM (10)
Mn
=M

1 o
~ 0 > P(OIM) with M7 ~ P(JA)  (11)
i=1
» Mean absolute error for N parameters; \; (true value) and N
(est. value) rescaled in [0; 1]

i=N
1 ~
MeanAE = Z; IAi — Ail (12)
Note: ABC estimator is the Venter mode of the marginals of
ABC posterior distribution

(SCIDYN
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> [llustration on a problem with 8 nodes

site2_to_site7
site6_to_site7

S0j_site2

.....

estimated values

site5_to_site?

Figure: The true network to estimate (left) and the estimated parameters
for both ABC and MCEM (right)
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> Marginals of ABC posterior distribution

A e kL

1 0 1
sitel_to_site2 site2_to_site7 site3_to_site6 site4_to_site5 site5_to_site7
0 ii 31 31 3 1 3
site6_to_site7 soj_sitel S0j_site2 s0j_site3 S0j_site4
i 31 RN 3
s0j_site5 S0j_site6 s0j_site7

» ABC mode Venter (black), MCEM (red), true values (green)
> MeanAE : 0.0469 (ABC mode), 0.0608 (MCEM)
» Likelihood : -631 (ABC mode), -544 (MCEM), -582 (true)
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) Comparisons of methods

MCEM true parameters
meanAE log-likelihood | meanAE log-likelihood
ABCventer 0.01 -551.50 0.08 -523.13
MCEM 0.06 28.38

Table: Comparison of meanAE and log-likelihood for the two estimation
methods. Differences between meanAE and log-likelihood are all
significant (p < 0.01 using a paired Wilcoxon test).

(SCIDYN
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> Impact of the number of nodes
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Figure: Mean absolute error (above), maximal absolute error (center) and

log likelihood (below).
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> Other impacts of benchmark settings

[ Expecied Mean AE of arandom
estimate for others replicates

0a-
Expected Mean AE of a random
estimate for first replicate
02 .
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Figure: Mean absolute error according to the maximal number of

destination sites per site (left) and mean absolute error according the
replicate type (right).
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> Time of computation
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Figure: Number of simulations (left)
for the two methods.
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) Far Eastern Curlew case study
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Figure: Departure and stopover sites of FE Curlew northward migration
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>

v

Far Eastern Curlew case study

Migration settings: 8 sites/nodes, 12 parameters

Count data from citizen science data base eBird :
https://ebird.org/

Unbiasing extracted data (temporal and spatial biases)
Aggregation /extrapolation to larger study sites

Transition probabilities and sojourn mean time estimation for
years 2018 and 2019 (ongoing work)

(SCIDYN
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) Conclusion

» Birds migration formalized as Factorial Hidden Semi Markov
Model.

» Two constrasted methods for estimating parameters
(transition probabilities and mean sojourn times) :

» Monte Carlo Expectation Maximization : frequentist approach,
based on likelihood maximization, adhoc
» Approximate Bayesian Computation: Bayesian approach, based
on empirical statistics, blax-box generic method (package R
EasyABC)
» Satisfying results on benchmark simulated experiments (up to
10 nodes and 30 parameters)

» Count data extracted from eBird databases.

(SCIDYN
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) Future work

» Provide final results for Far Eastern Curlew case study

» Variational Based Expectation Maximization method (without
simulation)

> Integrate birds trajectories from GPS tracking systems
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