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For the conservation of shorebirds
Which stopover sites should be protected in priority?

• 50 millions of shorebirds migrate from Siberia to Australasia

• Migration is threatened by human developments along the migratory route

But … prioritising is difficult because only partial knowledge on the main routes

2

Image: Nick Murray, University of 
Queensland

East Asian Australasian 
flyway

Coastal Development Sea Level Rise

From Iwamura et al. 2013



How to infer the most likely migratory routes ?

• Given that
• Monitoring flows is difficult

• Observed count data are imperfect (detection error)

 We propose to combine networks and statistical
inference
• A representation of possible migratory routes as a 

directed and weighted graph

• A Hidden Semi Markov Model of birds trajectories

and observed counts

• Adapted estimation algorithms
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The BIRDNET HSMM model formally:
a discrete time multidimensional HSMM

• Hidden variable: the state of each bird at each time step, among
• Being at site 1, … I, flying towards a site, dead

• Sojourn time at site i : Poisson(λi)

• Transition probabilities
• from ‘site i’ to ‘flying towards j’ : r(i,j)

• from ‘site i’ to ‘death’: r(i,death), assumed known

• from ‘flying towards j’ to ‘site j’ : 1

• Observed variable : noisy bird counts for some time steps and some sites : Poisson(N(i,t))

 Inferring the flyway network amounts to estimate the transition rates r(i,j)

 By product: estimation of the mean sojourn times λi

4

i

f j1 j1

f jk jk

f jn jn

r(i,j1)

r(i,jk)

r(i,jn)



The BIRDNET HSMM model as a simulator

5

1. Simulate the hidden
trajectories using
- Sojourn time
- Transition rates

2. Compute the exact
number of birds at
each site and each
time step

3. Simulate a noisy
version of the exact
counts



How to estimate transition probabilities
(and sojourn times)?
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BIRDNET model is easy to simulate but 
likelihood is complex to optimize: 
• hidden variables
• observations make bird trajectories

dependent ! 
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How to estimate transition probabilities
(and sojourn times)?

Deterministic
algorithm

Simulation-based
algorithm

Frequentist
estimation

EM Monte Carlo EM 
(MCEM)

Bayesian
estimation

Variational Bayes EM 
(VBEM)

ABC
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BIRDNET model is easy to simulate but 
likelihood is complex to optimize: 
• hidden variables
• observations make bird trajectories

dependent ! 

 Existing estimation tools reach their limits

 We explore several options for 
approximate estimation



Outline

I A factorial Hidden semi markov model for modeling the
Australasian migration of birds

I MCEM Metropolis Hastings algorithm

I An ABC algorithm

I Experiments: Benchmarks + real data
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Single bird semi-Markov trajectory model

I I sites, T + 1 time steps (H = {0, . . . ,T}).
I Bird n’s (1 ≤ n ≤ N) trajectory uniquely defined by:

πn =
(

(in0 , t
n
0 ), (in1 , t

n
1 ), . . . , (inFn

, tnFn
)
)
. (1)

given that flight times (fij) are fixed and known.
tnk is the arrival time at site ink ∈ I ∪ {death}.
tn0 = 0 ≤ tn1 ≤ . . . ≤ tnFn

≤ T .
I Sojourn time model: tnk+1 − tnk − fik ik+1

= τik where:

Pλik (τik = d) =
(λik )d−1

(d − 1)!
e−λik , ∀ d = 1, 2, . . . (2)

I Transition probabilities: R(i , j) > 0 iff i < j (no way back)
and µi = 1−

∑
j>i R(i , j) is the mortality rate in site i .

I Model parameters: (λik )1≤ik≤I and (R(i , j))1≤i<j≤I .
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Birds population’s trajectory model.

Single bird’s trajectory πn semi-Markov model:

Pr ,λ(πn) =
Fn−1∏
k=0

R
(
ink , i

n
k+1

)
Pλin

k

(
τ = tnk+1 − tnk − fink i

n
k+1

)
. (3)

Let Π = {π1, . . . , πN} denote the set of trajectories of the N birds.
Since trajectories are independent, we have:

Pr ,λ (Π) =
N∏

n=1

Fn−1∏
k=0

R
(
ink , i

n
k+1

)
Pλin

k

(
τ = tnk+1 − tnk − fink i

n
k+1

)
.
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Birds population observation model

Nt
i (Π) is the number of birds located in site i at time t:

Nt
i (Π) =

∣∣∣{πn ∈ Π, ∃k ∈ {0, . . . ,Fn − 1}, ink = i

and tnk ≤ t < tnk+1 − fink i
n
k+1

}∣∣∣.
For a set Ω ⊆ I × H of observed site-times, the set of observations
is represented by a matrix O of observed bird counts, of size I ×T :

O(i , t) = Ot
i if (i , t) ∈ Ω and NA else (4)

The joint distribution of all the observations O = {Ot
i } given the

trajectories is

P(O|Π) =
∏

(i ,t)∈Ω

PNt
i
(Ot

i ). (5)

where PNt
i

is a Poisson distribution of mean-variance Nt
i .
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Outline

I A factorial Hidden semi markov model for modeling the
Australasian migration of birds

I MCEM Metropolis Hastings algorithm

I An ABC algorithm

I Experiments: Benchmarks + real data
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Expectation Maximization algorithm (1)

Our objective is to compute Λ∗, the values of parameters which
maximize the likelihood of observations O (in fact, it is more
convenient to optimize the log-likelihood, which is equivalent):

Λ∗ = arg max
Λ

log (PΛ(O)) ,

Λ∗ = arg max
Λ

log

∫
Π
PΛ(O,Π)dΠ.
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Expectation Maximization algorithm (2)

The Expectation-Maximization algorithm is an iterative algorithm
that seeks to find an approximation of Λ∗ by iterating updates of
estimates of Λ∗ as follows:

Λnew = arg max
Λ

EΠ[log (PΛ(Π,O)) | Λold ,O]

= arg max
Λ

∫
Π

log (PΛ(Π,O))PΛold
(Π|O)dΠ.
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Expectation Maximization algorithm (3)

The following convenient notation is used for computations:

Q(Λ|Λold) =

∫
Π

log (PΛ(Π,O))PΛold
(Π|O)dΠ.

This gives the usual E-M representation of the algorithm:

I Expectation. Compute the quantities involving Λold in
Q(Λ|Λold).

I Maximization. Compute

Λnew = arg max
Λ

Q(Λ|Λold).

21.06.2021

p. 9



Monte-Carlo Expectation Maximization

The Expectation step is intractable. Indeed, the domain of sets of
trajectories is too large.
Provided that we are able to simulate PΛold

(Π|O), the integral can
be approximated, leading to a Monte-Carlo version of EM:
I Generate M samples of the N bird trajectories,{

Π(1), . . . ,Π(M)
}

from PΛold
(Π|O).

I Approximate Q(Λ|Λold) with

Q̂(Λ|Λold) =
1

M

M∑
m=1

log
(
PΛ(Π(m),O)

)
. (6)

I Compute Λnew as:

Λnew = arg max
Λ

Q̂(Λ|Λold). (7)

In practice, steps (6) and (7) are grouped together, in order to
build a single optimization program defining update Λold → Λnew .
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MCEM updates in Birdnet

I Generate
{

Π(1), . . . ,Π(M)
}

from PΛold
(Π|O).

I The rnewij are empirical frequencies:

rnewij =

∑M
m=1 |{πn ∈ Π(m)s.t. ∃k , ink = i and ink+1 = j}|∑M

m=1 |{πn ∈ Π(m) s.t. ∃k , ink = i}|
.

I The λnewi are obtained from empirical sojourn times:

λnewi =

∑M
m=1

∑
πn∈Π(m)

∑
k<Fn

(tnk+1 − tnk − fink i
n
k+1

)1{ink =i}∑M
m=1

∑
πn∈Π(m)

∑
k<Fn

1{ink =i}
−1.

So, the hard part is to generate sample populations’ trajectories
from PΛold

(Π|O).
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Metropolis-Hastings algorithm

Generation of M samples of the N bird trajectories,{
Π(1), . . . ,Π(M)

}
from PΛold

(Π|O).

I A first sample Π(1) is simulated using PΛold
(Π).

I For m in {1, . . . ,M − 1}:
Every πi ∈ Π(m) is kept (with probability 1− p) or
re-simulated according to PΛold

(·) (with probability p).
The result is Π.

I Rejection or acceptance of Π according to α
(
Π(m),Π

)
:

α(Π(m),Π) = min{1, P(O|Π)

P(O|Π(m))
}

Select Π(m+1) ← Π with probability α
(

Π(m),Π
)

← Π(m) with probability 1− α
(

Π(m),Π
)

p is the only parameter of the MH algorithm. p = 0.1 was chosen.
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Take-away points of the MCEM approach

I MCEM updates given
{

Π(1), . . . ,Π(M)
}

are easy (averaging)

I Getting simulation samples from PΛold
(Π|0) is hard ⇒

Metropolis Hastings

I The algorithm is slow

I it is prone to degeneracy (if edge i → j unobserved in Π(m) it
will never be observed again ⇒ hard coding of transition
probabilities lower bounds

We also tried ABC to overcome the degeneracy problem (and spare
computation time).
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Outline

I A factorial Hidden semi markov model for modeling the
Australasian migration of birds

I MCEM Metropolis Hastings algorithm

I An ABC algorithm

I Experiments: Benchmarks + real data
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Approximate Bayesian Computation

I Adaptive Population Monte Carlo Approximate Bayesian
Computation (Lenormand et al. 2012)

I Provides a distribution of parameter values, starting from
uniform priors

I Iterative accept-reject algorithm, particle filter approach

I No computation of likelihood, relies on a distance ρ (default
behavior)

ρ(x ,O) =
∑

(s,t)∈Ω

(x(s,t) − O(s,t))2

v(s,t)
with x ∼ f (x |Λ) (8)
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ABC initialization

1 Generate j = 1, · · · ,N particules from uniform prior
(optimized LHS) and evaluate them:

1a Λj ∼ π(Λ) (generation)
1b x (j) ∼ f (x |Λj) (simulation)
1c Using {x (j)}1≤j≤N compute the variance of statistics v(s,t)

(statistics ponderation, definition of ρ)
1d ρj = ρ(x (j),O) (evaluation)
1e ωj = 1 (particule weight)

2 Select subset of particules

2a Let ε the α-quantile of {ρj}1≤j≤N

2b Let {(Λi , ωi , ρi )}1≤i≤Nα = {(Λj , ωj , ρj)|ρj ≤ ε}1,≤j≤N

2c Take σ2 as twice the empirical variance of {(Λi , ωi )}1≤i≤Nα
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ABC iteration

1 Let current population be : {(Λi , ωi , ρi )}1≤i≤Nα
2 Generate new particules : {(Λj , ωj , ρj)}Nα+1≤j≤N

2a (Λj |Λk) ∼ N (Λk , σ
2) with

k ∈ {1, · · · ,Nα} according probs. {ω1, · · · , ωNα}
2b ρj = ρ(O, x) with x ∼ f (x ,Λj)

2c ωj =
π(Λj )∑Nα

n=1(ωn/
∑Nα

m=1 ωm)σ−1ψ(σ−1(Λj−Λn))

3 Update population:

3a pacc = 1
N−Nα

∑N
j=Nα+1 1ρj<ε (stopping criterion, proved to

converge towards 0)
3b Update ε the α-quantile of {ρp}1≤p≤N

3c Update {(Λi , ωi , ρi )}1≤i≤Nα = {(Λp, ωp, ρp)|ρp ≤ ε}1≤p≤N

3d Take σ2 as twice the empirical variance of {(Λi , ωi )}1≤i≤Nα
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Outline

I A factorial Hidden semi markov model for modeling the
Australasian migration of birds

I MCEM Metropolis Hastings algorithm

I An ABC algorithm

I Experiments: Benchmarks + real data
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Benchmark experiments settings

I Migration graph structure with 4 to 10 nodes.

I A maximal number of destination nodes per node ranging
from 2 to 4.

I Mean sojourn time range is [1, 3] weeks. Five replicates by
structure settings (different mean sojourn time and transition
probabilities). The first replicate is designed with equiprobable
transitions and mean sojourn times of 2 weeks per node.

I For each problem replicate, an observation matrix is simulated
and only a subset of week-site observations are kept for
estimation (100%, 70%, 50%).

→ 300 estimations for both MCEM and ABC.

→ 4 to 30 parameters to estimate by problem to solve.
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Quantitative evaluation
I Likelihood evaluation:

P(O|Λ) =

∫
Π
P(O|Π,Λ) ∗ P(Π|Λ)dΠ (9)

=

∫
Π
P(O|Π) ∗ P(Π|Λ)dΠ (10)

≈ 1

M

i=M∑
i=1

P(O|Πi ) with Πi ∼ P(.|Λ) (11)

I Mean absolute error for N parameters; λi (true value) and λ̃i
(est. value) rescaled in [0; 1]

MeanAE =
1

N

i=N∑
i=1

|λ̃i − λi | (12)

Note: ABC estimator is the Venter mode of the marginals of
ABC posterior distribution
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Illustration on a problem with 8 nodes
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Figure: The true network to estimate (left) and the estimated parameters
for both ABC and MCEM (right)
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Marginals of ABC posterior distribution
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I ABC mode Venter (black), MCEM (red), true values (green)

I MeanAE : 0.0469 (ABC mode), 0.0608 (MCEM)

I Likelihood : -631 (ABC mode), -544 (MCEM), -582 (true)
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Comparisons of methods

MCEM true parameters
meanAE log-likelihood meanAE log-likelihood

ABCventer 0.01 -551.50 0.08 -523.13
MCEM 0.06 28.38

Table: Comparison of meanAE and log-likelihood for the two estimation
methods. Differences between meanAE and log-likelihood are all
significant (p < 0.01 using a paired Wilcoxon test).
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Impact of the number of nodes
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Other impacts of benchmark settings
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replicate type (right).
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Time of computation
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Figure: Number of simulations (left) and elapsed time in seconds (right)
for the two methods.
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Far Eastern Curlew case study

Figure: Departure and stopover sites of FE Curlew northward migration
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Far Eastern Curlew case study

I Migration settings: 8 sites/nodes, 12 parameters

I Count data from citizen science data base eBird :
https://ebird.org/

I Unbiasing extracted data (temporal and spatial biases)

I Aggregation/extrapolation to larger study sites

I Transition probabilities and sojourn mean time estimation for
years 2018 and 2019 (ongoing work)
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Conclusion

I Birds migration formalized as Factorial Hidden Semi Markov
Model.

I Two constrasted methods for estimating parameters
(transition probabilities and mean sojourn times) :
I Monte Carlo Expectation Maximization : frequentist approach,

based on likelihood maximization, adhoc
I Approximate Bayesian Computation: Bayesian approach, based

on empirical statistics, blax-box generic method (package R
EasyABC)

I Satisfying results on benchmark simulated experiments (up to
10 nodes and 30 parameters)

I Count data extracted from eBird databases.
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Future work

I Provide final results for Far Eastern Curlew case study

I Variational Based Expectation Maximization method (without
simulation)

I Integrate birds trajectories from GPS tracking systems
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