From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending word
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Analyzing (complex) systems with Structural Equation Modelling

16 mars 2021

NetBio

Mathieu Emily - NetBio - 16 mars 2021

Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

- Economics, Social Science, Psychology
 - Structural equation models and the quantification of behavior (Bollen et al., 2011)

From	Linear	model	to	Path	model
	000				

Latent variable

Model 0 0000000 000 00000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

- Economics, Social Science, Psychology
 - ▶ Structural equation models and the quantification of behavior (Bollen et al., 2011)
- Ecology
 - Structural Equation Modeling and Natural Systems (Grace, 2009)
 - Applications of structural equation modeling in ecological studies (Fan, 2016)

From	Linear	model	to	Path	model
	000				

Latent variabl

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

- Economics, Social Science, Psychology
 - Structural equation models and the quantification of behavior (Bollen et al., 2011)
- Ecology
 - Structural Equation Modeling and Natural Systems (Grace, 2009)
 - Applications of structural equation modeling in ecological studies (Fan, 2016)
- Medicine and Genomics
 - Structural equation models for pathway identification (Xiong, 2001)
 - Application of Structural Equation Models to GWAS (Kim et al., 2010)
 - The mediating effects of public genomic knowledge in precision medicine implementation: A structural equation model approach (Mogaka and Chimbari, 2020)
 - Bayesian structural equation modeling in multiple omics data (Maity, 2020)

From Linear model to Path model

Latent variabl

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

- Economics, Social Science, Psychology
 - Structural equation models and the quantification of behavior (Bollen et al., 2011)
- Ecology
 - Structural Equation Modeling and Natural Systems (Grace, 2009)
 - Applications of structural equation modeling in ecological studies (Fan, 2016)
- Medicine and Genomics
 - Structural equation models for pathway identification (Xiong, 2001)
 - Application of Structural Equation Models to GWAS (Kim et al., 2010)
 - The mediating effects of public genomic knowledge in precision medicine implementation: A structural equation model approach (Mogaka and Chimbari, 2020)
 - Bayesian structural equation modeling in multiple omics data (Maity, 2020)
 - A comparison of methods for inferring causal relationships between genotype and phenotype using additional biological measurements (Ainsworth *et al.*, 2017)

From	Linear	model	to	Path	model
	000				

Latent variabl

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Examples of the use of SEM

- Economics, Social Science, Psychology
 - ▶ Structural equation models and the quantification of behavior (Bollen et al., 2011)
- Ecology
 - Structural Equation Modeling and Natural Systems (Grace, 2009)
 - Applications of structural equation modeling in ecological studies (Fan, 2016)
- Medicine and Genomics
 - Structural equation models for pathway identification (Xiong, 2001)
 - Application of Structural Equation Models to GWAS (Kim et al., 2010)
 - The mediating effects of public genomic knowledge in precision medicine implementation: A structural equation model approach (Mogaka and Chimbari, 2020)
 - Bayesian structural equation modeling in multiple omics data (Maity, 2020)
 - A comparison of methods for inferring causal relationships between genotype and phenotype using additional biological measurements (Ainsworth *et al.*, 2017)

B. Shipley, Cause and correlation in Biology, 2016

- SEM is a tool for modeling a global system
- SEM is one of the most popular tool for investigating causality

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Outline

- 1 From Linear model to Path model
- 2 Latent variables
- 3 Model
- **4** SEM and Explanatory Factor Analysis
- **5** Ending words

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
00000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Outline

1 From Linear model to Path model

- 2 Latent variables
- 3 Model
- **4** SEM and Explanatory Factor Analysis
- **6** Ending words

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
00000	00000	0 000000 000 0000000	000 0000000000 000	00000000000

Introductive example : Electroencephalography for Alzheimer's patients Multiple linear regression

- Three variables: z-scores for brain rate in the frontal region (=EEG), Age and Systolic Blood Pressure (SBP)
- Linear regression
 - $\blacktriangleright EEG = \beta_0 + \beta_1 Age + \beta_2 SBP + \varepsilon$
 - ▶ Coefficients (β_0 , β_1 and β_2) are estimated by minimizing the residual variance $\sum (EEG EEG_{Mod})^2$
- From a system point-of-view
 - Age and SBP values are determined outside the model and are imposed on the model (=Exogeneous variables)
 - ► *EEG* values are determined by the model (=Endogeneous variable)

From Linear model to Path model

Latent variable

0 000000 000 0000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Introductive example : Electroencephalography for Alzheimer's patients DAG visualisation

• Visualisation using a Directed Acyclic Graph (DAG)

 $\textit{EEG} = \beta_0 + \beta_1\textit{Age} + \beta_2\textit{SBP} + \varepsilon$

From Linear model to Path model

Latent variable

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Introductive example : Electroencephalography for Alzheimer's patients Multivariate regression

- 6 measures for EEG: 3 regions (frontal, temporal, central) and 2 features (brain rate, complexity)
- Multivariate regression (~ Manova)
 - Basics for the estimation: minimizing the distance between the observed covariance for "response" variables and the model covariance
- DAG for a multivariate regression model

Mathieu Emily - NetBio - 16 mars 2021

From	Linear	model	to	Path	model	
000	000					

Latent variable

0 000000 000 00000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Introductive example : Electroencephalography for Alzheimer's patients Path modeling (1)

- "An increase in (systolic) blood pressure has always been taken as an inevitable consequence of ageing" (Pinto, 2007)
- How can we modify the modeling of the system?

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0000000000

Introductive example : Electroencephalography for Alzheimer's patients Path modeling (1)

- "An increase in (systolic) blood pressure has always been taken as an inevitable consequence of ageing" (Pinto, 2007)
- How can we modify the modeling of the system?

• SBP is now an endogeneous variable

Paradigm shift

- In **path modeling**, all observed variables in the system are considered in the estimation of the model
- The aim is to model the covariance matrix

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	●0000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Outline

1 From Linear model to Path model

2 Latent variables

3 Model

4 SEM and Explanatory Factor Analysis

6 Ending words

From Linear model to Path model

Latent variables

Model 0 000000 000 0000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Football example

- How to define a strategy of success?
- Data obtained from all teams in an entire season.

Variable	Description
GSH	total number of goals scored at home
GSA	total number of goals scored away
SSH	percentage of matches with scores goals at home
SSA	percentage of matches with scores goals away
GCH	total number of goals conceded at home
GCA	total number of goals conceded away
CSH	percentage of matches with no conceded goals at home
CSA	percentage of matches with no conceded goals away
WMH	total number of won matches at home
WMA	total number of won matches away
LWR	longest run of won matches
LRWL	longest run of matches without losing
YC	total number of yellow cards
RC	total number of red cards

From Linear model to Path model

Latent variables

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Football example The concept of Success

- Success is easy to observe/measure but understanding how to achieve success is more complicated
 - Attack strategy
 - Defense strategy
 - Adapt to the opponent
- 4 variables are related to concept the success: WMH, WMA, LWR and LRWL

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending wor
000000	00000	0 000000 000 0000000	000 00000000000 000	0 0000 0000

Football example Latent modeling

- Similarly, the concepts of Attack and Defense can be modeled as:
 - Attack: GSH, GSA, SSH and SSA
 - ▶ Defense: GCH, GCA, CSH and CSA

From Linear model to Path model

Latent variables

Model 0 000000 000 0000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Football example Latent modeling

- Similarly, the concepts of Attack and Defense can be modeled as:
 - Attack: GSH, GSA, SSH and SSA
 - ▶ Defense: GCH, GCA, CSH and CSA
- How to link observed and/or latent variables?

From Linear model to Path model

Latent variables

Model 0 000000 000 0000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Football example Latent modeling

- Similarly, the concepts of Attack and Defense can be modeled as:
 - Attack: GSH, GSA, SSH and SSA
 - ▶ Defense: GCH, GCA, CSH and CSA
- How to link observed and/or latent variables?

rom Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
00000	0000	0 000000 000 0000000	000 00000000000 000	0 0000 0000

Structural model

• A structural model is made by 2 models:

- Each arrow is a linear link between variables:
 - Success = $f(Attack, Defense) = \beta_1 Attack + \beta_2 Defense + \varepsilon$

•
$$GSH = f(Attack) = \gamma_1 Attack + \varepsilon$$

• Remark: Success is an endogeneous latent variable while Attack and Defense are two exogeneous latent variables.

Mathieu Emily - NetBio - 16 mars 2021

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	• 000000 000 0000000	000 0000000000 000	0 0000 0000

Outline

- **1** From Linear model to Path model
- 2 Latent variables
- 3 Model
- **4** SEM and Explanatory Factor Analysis
- **5** Ending words

From	Linear	model	to	Path	model	
000	000					

Latent variable

Model 0 000000 000 000000 SEM and Explanatory Factor Analysi 000 0000000000 000 Ending words 0 0000 0000

Outline

3 Model

General definition

Identification rules Estimation and tests

Mathieu Emily - NetBio - 16 mars 2021

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 00000000	000 0000000000 000	0 0000 0000

Latent model

• Let consider a model with *m* endogeneous latent variables and *n* exogeneous variables

$$\eta = \mathbf{B}\eta + \mathbf{\Gamma}\xi + \zeta$$

- **B** is a $m \times m$ matrix of coefficients for latent endogeneous variables
- **F** is a $m \times n$ matrix of coefficients for latent exogeneous variables
- $\Phi = \mathbb{E}[\xi\xi']$ is a $n \times n$ covariance matrix for ξ
- $\Psi = \mathbb{E}[\zeta \zeta']$ is a $m \times m$ covariance matrix for ζ

Assumptions:

•
$$\mathbb{E}[\eta] = 0$$

$$\mathbf{E}[\xi] = \mathbf{0}$$

- $\blacktriangleright \mathbb{E}[\zeta] = 0$
- $Cov(\zeta,\xi) = 0$
- ► (I B) nonsingular

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Measurement model

 Let consider a model with p endogeneous observed variables and q exogeneous observed variables

 $\begin{aligned} \mathbf{x} &= \mathbf{\Lambda}_{\mathbf{x}} \boldsymbol{\xi} + \boldsymbol{\delta} \\ \mathbf{y} &= \mathbf{\Lambda}_{\mathbf{y}} \boldsymbol{\eta} + \boldsymbol{\varepsilon} \end{aligned}$

- Λ_x is a $q \times n$ matrix of coefficients relating x to ξ
- Λ_y is a p imes m matrix of coefficients relating y to η
- $\Theta_{\delta} = \mathbb{E}[\delta\delta']$ is a q imes q covariance matrix for δ
- $\Theta_{\varepsilon} = \mathbb{E}[\varepsilon \varepsilon']$ is a $p \times p$ covariance matrix for ε

Assumptions:

$$\mathbf{E}[\delta] = \mathbf{0}$$

•
$$\mathbb{E}[\varepsilon] = 0$$

•
$$Cov(\delta, \varepsilon) = 0$$

•
$$Cov(\delta,\zeta) = 0$$
 and $Cov(\delta,\xi) = 0$

•
$$Cov(\varepsilon,\zeta) = 0$$
 and $Cov(\varepsilon,\xi) = 0$

From	Linear	model	to	Path	model
000	000				

Latent variable

 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Toy example of prostate cancer

Observed variables:

- Gleason score from biopsy
- PSA test from a blood sample
- HPC1 (hereditary prostate cancer 1) expression
- PcaP (predisposing for prostate cancer) expression
- PG1 (prostate cancer susceptibility gene 1) expression
- BMI
- Exposure to pollution
- Age

From	Linear	model	to	Path	model
	000				

Latent variable

Model
0
000000
000
0000000

SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Toy example of prostate cancer

Observed variables:

- Gleason score from biopsy
- PSA test from a blood sample
- HPC1 expression
- PcaP expression
- PG1 expression
- BMI
- Exposure to pollution
- Age

Cancer measures

Genetic measures

Environnemental measures

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Toy example of prostate cancer

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 00000000	000 0000000000 000	0 0000 0000

Covariance implied by the model

• Examples

$$Cov(HPC1, PSA) = Cov(\lambda_{11}^{x} Genetics + \delta_{11}, \lambda_{21}^{y} Cancer + \varepsilon_{2})$$

= $\lambda_{11}^{x} \lambda_{21}^{y} Cov(Genetics, Cancer)$
= $\lambda_{11}^{x} \lambda_{21}^{y} Cov(Genetics, \beta_{11} Genetics + \beta_{21} Environ. + \zeta_{1})$
= $\lambda_{11}^{x} \lambda_{21}^{y} \beta_{11} \phi_{11} + \lambda_{11}^{x} \lambda_{21}^{y} \beta_{21} \phi_{12}$

$$Cov(HPC1, PG1) = Cov(\lambda_{11}^{x} Genetics + \delta_{11}, \lambda_{31}^{x} Genetics + \delta_{31})$$
$$= \lambda_{11}^{x} \lambda_{31}^{x} \phi_{11}$$

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 00000000	000 0000000000 000	0 0000 0000

Covariance implied by the model

• Examples

$$Cov(HPC1, PSA) = Cov(\lambda_{11}^{x} Genetics + \delta_{11}, \lambda_{21}^{y} Cancer + \varepsilon_{2})$$

$$= \lambda_{11}^{x} \lambda_{21}^{y} Cov(Genetics, Cancer)$$

$$= \lambda_{11}^{x} \lambda_{21}^{y} Cov(Genetics, \beta_{11} Genetics + \beta_{21} Environ. + \zeta_{1})$$

$$= \lambda_{11}^{x} \lambda_{21}^{y} \beta_{11} \phi_{11} + \lambda_{11}^{x} \lambda_{21}^{y} \beta_{21} \phi_{12}$$

$$Cov(HPC1, PG1) = Cov(\lambda_{11}^{x} Genetics + \delta_{11}, \lambda_{31}^{x} Genetics + \delta_{31})$$
$$= \lambda_{11}^{x} \lambda_{31}^{x} \phi_{11}$$

• Similarly, all covariances can be obtained thus leading to the **implied** covariance $\Sigma(\theta)$ where θ is the set of unknown parameters of the model

Estimation principle

• Choosing heta for $\Sigma(heta)$ to be as close to S as possible

From	Linear	model	to	Path	model
000	000				

Latent variable

Model 0 000000 00000000 SEM and Explanatory Factor Analysi 000 0000000000 000 Ending words 0 0000 0000

Outline

3 Model

General definition

Identification rules

Estimation and tests

Mathieu Emily - NetBio - 16 mars 2021

• θ is identified if $\not\exists \ \theta_1$ and θ_2 such as $\Sigma(\theta_1) = \Sigma(\theta_2)$

• Example:

-	HPC1	PcaP	PG1
HPC1	$(\lambda_{11}^{\star})^2 \phi_{11} + \Theta_{11}^{\delta}$		
PcaP	$\lambda_{11}^{x}\lambda_{21}^{x}\phi_{11}$	$(\lambda_{21}^{\scriptscriptstyle X})^2 \phi_{11} + \Theta_{22}^{\scriptscriptstyle \delta}$	
PG1	$\lambda_{11}^{x}\lambda_{31}^{x}\phi_{11}$	$\lambda_{21}^{x}\lambda_{31}^{x}\phi_{11}$	$(\lambda_{31}^{\scriptscriptstyle X})^2\phi_{11}+\Theta_{33}^\delta$

- 7 parameters for only 6 observations: a need for constraint
 - Set the variance of the latent variable to 1 ($\phi_{11} = 1$)
 - Set $\lambda_{11}^{x} = 1$ to scale the *Genetics* to *HPC*1
 - Set λ^x₁₁ = λ^x₂₁ = λ^x₃₁ to balance the amount of variance/covariance in the latent space (τ−equivalence)

From	Linear	model	to	Path	model	
000	000					

Latent variable

SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Conditions for identification (Bollen, 1989)

• The *t* – *rule*

$$t \leq \frac{(p+q)(p+q+1)}{2}$$

where *t* is the number of free parameters in θ

- A necessary but not sufficient condition (t = 19 in the general prostate model with p + q = 8 observed variables)
- Two-Step rules
 - Step 1 : Consider y and η as exogeneous variables (CFA)
 - Three-indicator rule
 - Two-indicator rule
 - Step 2 : Consider the identification as the latent model (as a measurement model)
 - A sufficient condition
- MIMIC rule (for Multiple Indicators and MultIple Causes model)

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Outline

3 Model

General definition Identification rules Estimation and tests

Mathieu Emily - NetBio - 16 mars 2021

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Estimation

The closeness of $\Sigma(\theta)$ to S is measured by fitting functions $F(S, \Sigma(\theta))$ (with $F \ge 0$ and F = 0 iif $\Sigma(\theta) = S$)

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Estimation

The closeness of $\Sigma(\theta)$ to S is measured by fitting functions $F(S, \Sigma(\theta))$ (with $F \ge 0$ and F = 0 iif $\Sigma(\theta) = S$)

• ML (Maximum Likelihood)

$$F_{ML} = log|\Sigma(\theta)| + tr(S\Sigma^{-1}(\theta)) - log|S| - (p+q)$$

- Asymptotically unbiased
- Consistent
- Asymptotically efficient
- Scale freeness
- Availibity of a Confidence Interval
| From Linear model to Path model | Latent variables | Model | SEM and Explanatory Factor Analysis | Ending words |
|---------------------------------|------------------|---------------------------------------|-------------------------------------|-------------------|
| 000000 | 00000 | 0
000000
000
0 000000 | 000
0000000000
000 | 0
0000
0000 |

Estimation

The closeness of $\Sigma(\theta)$ to S is measured by fitting functions $F(S, \Sigma(\theta))$ (with $F \ge 0$ and F = 0 iif $\Sigma(\theta) = S$)

ML (Maximum Likelihood)

$$F_{ML} = log |\Sigma(\theta)| + tr(S\Sigma^{-1}(\theta)) - \log |S| - (p+q)$$

- Asymptotically unbiased
- Consistent
- Asymptotically efficient
- Scale freeness
- Availibity of a Confidence Interval
- ULS (Unweighted Least Squares)

$$F_{ULS} = \frac{1}{2} tr \left([S - \Sigma(\theta)]^2 \right)$$

• GLS (Generalized Least Squares)

$$F_{GLS} = \frac{1}{2} tr\left(\left[I - \Sigma(\theta)S^{-1}\right]^2\right)$$

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

lavaan R package - syntax and estimation

Package loading

> library(lavaan)

Model specification

> FitModel <- '

Genetics = \sim HPC1+PcaP+PG1

Environment = \sim BMI+Pollution+Age

Cancer = \sim Gleason+PSA

 ${\rm Cancer}\,\sim\,{\rm Genetics}{\rm +}{\rm Environment}$

Genetics $\sim \sim$ Environment

,

Model estimation

> EstimModel <- sem(FitModel, myData)

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

semPlot R package - visualisation

- > library(semPlot)
- > semPaths(EstimModel,what="est",sizeLat=10,edge.label.cex = 1,sizeMan=10)

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000	000 0000000000 000	0 0000 0000

Global summary

> summary(EstimModel)

```
> summary(EstimModel)
lavaan 0.6-7 ended normally after 45 iterations
```

Estimator	ML
Optimization method	NLMINB
Number of free parameters	19
Number of observations	100
Model Test User Model:	
Test statistic	33.406
Degrees of freedom	17
P-value (Chi-square)	0.010

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 00000000	000 0000000000 000	0 0000 0000

Global Fit Measures

- Principle: comparaison with the saturated model
 - *M_s*: Saturated model: no latent variable and one parameter for each variance/covariance for manifest variables
 - $\mathbf{\mathcal{D}} = -2(\ell(\mathcal{M}) \ell(\mathcal{M}_s)) \sim_{\mathcal{H}_0} \chi^2(df)$
 - p = 0.010: the model is rejected
- Other measures are proposed but "their purpose is to determine the degree to which the rejected model is approximately correct" (Shipley, 2016):
 - RMSEA (Root Mean Square Error of Approximation)
 - CFI (Bentler's comparative fit index)

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 00000000	000 0000000000 000	0 0000 0000

Sample size: N

- Determining the sample size: a **challenge** faced by investigators, peer reviewers, and grant writers
- In the early 80's (Boomsma, 1985)
 - ▶ Reasonable results could be obtained with N of the order of 100
- In the late 1980's: Bollen consider the N:q ratio (where q is the number of free parameters)
 - N: q = 5 seems to be enough for normally distributed variables
 - N: q = 10 seems to be enough for other distribution
- More recent simulation-based results show the **complex interplay** between (Wolf *et al.*, 2013, Deng *et al.*, 2018)
 - Effect of number of factors
 - Effect of number of indicators
 - ▶ Effect of magnitude of factor loadings and regression paths

From	Linear	model	to	Path	model
000	000				

Latent variable

Model 0 000000 00000000 SEM and Explanatory Factor Analysis 000 0000000000 000 Ending words 0 0000 0000

Interpretation

The proposed model is rejected: game over?

- Yes in Confirmatory Factor Analysis (CFA)
 - The model is not confirmed by observed data
- No in Explanatory Factor Analysis (EFA)
 - ▶ How can we propose a more likely model?

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	••• ••••••• •••• ••••	0 0000 0000

Outline

- **1** From Linear model to Path model
- 2 Latent variables
- 3 Model
- **4** SEM and Explanatory Factor Analysis
- **5** Ending words

Latent variable

0 000000 000 00000000 Ending word: 0 0000 0000

Caution with coefficients summary

Latent Variables:									
	Estimate	Std.Err	z-value	P(> z)					
Genetics =~									
HPC1	1.000				Variances:				
PcaP	0.578	0.172	3.360	0.001	ful fulles.	Estimato	Std Enn	7-10100	P(stat)
PG1	0.542	0.158	3.436	0.001	HPC1	0 000	0 368	0 270	0 787
Environment =~					PcoP	1 582	0.300	6 182	0.000
BMI	1.000				PG1	1 217	0.204	5 972	0.000
Pollution	-0.070	0.097	-0.726	0.468	BMT	0 508	0.267	1 387	0.000
Age	0.623	0.178	3.510	0.000	Pollution	1 046	0 148	7 058	0.100
Cancer =~					Age	1 293	0 230	5 614	0.000
Gleason	1.000				Gleason	1 423	0 328	4 338	0.000
PSA	1.341	0.215	6.228	0.000	PSA	0.014	0.466	0.031	0.975
					Genetics	1.524	0.433	3,520	0.000
Regressions:					Environment	1.438	0.447	3.218	0.001
	Estimate	Std.Err	z-value	P(> z)	.Cancer	1.213	0.318	3.810	0.000
Cancer ~									
Genetics	0.292	0.129	2.267	0.023					
Environment	0.639	0.208	3.082	0.002					
Covariances:									
	Estimate	Std.Err	z-value	P(>lzl)					
Genetics ~~									
Environment	-0.048	0.174	-0.274	0.784					

• By default, latent variables are of the scale of "its" first manifest variable

- Interpretation depends on the constraint
- Changing the constraint on the latent variable does not modify the global fit

Latent variable

0 000000 000 0000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Residuals

• PcaP and PG1 are badly fitted

From	Linear	model	to	Path	model
000	000				

Latent variable

Model 0 000000 000 0000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Outline

SEM and Explanatory Factor Analysis Model modification

Variable selection using R-square

From	Linear	model	to	Path	model
000	000				

Latent variable

Model 0 000000 000 0000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Outline

4 SEM and Explanatory Factor Analysis

Model modification

Constraints relaxation

Adding constraint Model comparison

Latent variab

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Modification Indices

- A model can be modified by relaxing fixed coefficients
- Modification index is based on Lagrangian multiplier (LM)
- > modindices(EstimModel)

	lhs	ор	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
33	Cancer	=~	HPC1	11.065	-0.430	-0.595	-0.467	-0.467
34	Cancer	=~	PcaP	8.459	0.292	0.404	0.279	0.279
46	PcaP	~~	PG1	6.564	-0.609	-0.609	-0.439	-0.439
29	Environment	=~	PcaP	5.486	0.280	0.335	0.232	0.232
28	Environment	=~	HPC1	5.238	-0.327	-0.392	-0.308	-0.308
۸N	HDC1		DC1	2 000	1 028	1 0/28	7 097	7 097

From	Linear	model	to	Path	model	
000	000					

atent variables

0 000000 000 00000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Stepwise approach using modification indices

- Freeing Cancer =~ HPC1 and Cancer =~ PcaP is nonsense
- We try to add a covariance between PcaP and PG1

```
> FitModel.2 <- '
Genetics =~ HPC1+PcaP+PG1
Environment =~ BMI+Pollution+Age
Cancer =~ Gleason+PSA
Cancer ~ Genetics+Environment
Genetics ~~ Environment
PcaP ~~ PG1</pre>
```

• Global fit measure

lavaan 0.6-7 ended normally after 49 iterations

ML
NLMINB
20
100
20.315
16
0.206

Latent variable

0 000000 000 0000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Updated DAG

Latent variable

0 000000 000 00000000 SEM and Explanatory Factor Analysis

Ending words

Constraint modification with lavaan

• Freeing latent coefficient:

Genetics = \sim NA*HPC1+PcaP+PG1

Fixing latent variance:

Genetics $\sim \sim$ 1*Genetics

lavaan 0.6-7 ended normally after 49 itera
--

Estimator	ML
Optimization method	NLMINB
Number of free parameters	20
Number of observations	100
Model Test User Model:	
Test statistic	20.315
Degrees of freedom	16
P-value (Chi-square)	0.206

• Global fit remains unchanged

From	Linear	model	to	Path	model
000	000				

Latent variabl

Model 0 000000 000 0000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Outline

SEM and Explanatory Factor Analysis Model modification

Constraints relaxation Adding constraint Model comparison

From	Linear	model	to	Path	model
000	000				

Latent variable

0 000000 000 00000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Modification of the models based on coefficient testing

- Latent model
 - The estimated covariance between Genetics and Environnement is not significant
- Measurment model
 - ► The loading between **Pollution and Environnement** is not significant

Estimator	ML
Optimization method	NLMINB
Number of free parameters	18
Number of observations	100
Model Test User Model:	
Test statistic	22.635
Degrees of freedom	18
P-value (Chi-square)	0.205

lavaan 0.6-7 ended normally after 45 iterations

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000000 000	0 0000 0000

Regularized SEM

• Jacobucci (2019) has proposed a regularized version of SEM:

 $egin{aligned} \mathcal{F}_{ML}^{Reg} &= \log |\Sigma(heta)| + tr(S\Sigma^{-1}(heta)) - \log |S| - (p+q) + \lambda \mathcal{P}(.) \end{aligned}$

• where P(.) is a penalized function (for ex. Lasso, Ridge, ...)

> fitRegSem <- regsem(EstimModelRegSem, lambda=1,

```
type="lasso", pars_pen=c("regressions","loadings"))
```

> fitRegSem\$coefficients

```
Genetics -> PcaP Genetics -> PG1 Environment -> Pollution Environment -> Age Cancer -> PSA
1
            -0.005
                            -0.005
                                                                                      0.001
  Genetics -> Cancer Environment -> Cancer 1 -> HPC1 1 -> PcaP 1 -> PG1 1 -> BMI 1 -> Pollution 1 -> Age
              -0.216
                                  191,918
                                              0.107
                                                        0.089 -0.14 -0.068
                                                                                        0.147
                                                                                                  -0.21
 1 -> Gleason 1 -> PSA Genetics ~~ Environment PcaP ~~ PG1 HPC1 ~~ HPC1 PcaP ~~ PcaP PG1 ~~ PG1
        -0.14 -0.226
                                        -0.209
                                                     0.264
                                                                186.676
                                                                               2 084
                                                                                           1.66
  BMI ~~ BMI Pollution ~~ Pollution Age ~~ Age Gleason ~~ Gleason PSA ~~ PSA Genetics ~~ Genetics
1
      1.938
                             1.053
                                        1.852
                                                      -2254.69
                                                                     3.448
                                                                                       -184.962
 Environment ~~ Environment Cancer ~~ Cancer
1
                     -0.001
                                     2277.82
```

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000000 000	0 0000 0000

Regularized SEM

• Jacobucci (2019) has proposed a regularized version of SEM:

 $egin{aligned} \mathcal{F}_{ML}^{Reg} &= \log |\Sigma(heta)| + tr(S\Sigma^{-1}(heta)) - \log |S| - (p+q) + \lambda \mathcal{P}(.) \end{aligned}$

• where P(.) is a penalized function (for ex. Lasso, Ridge, ...)

> fitRegSem <- regsem(EstimModelRegSem, lambda=1,</pre>

```
type="lasso", pars_pen=c("regressions","loadings"))
```

> fitRegSem\$coefficients

```
Genetics -> PcaP Genetics -> PG1 Environment -> Pollution Environment -> Age Cancer -> PSA
1
            -0.005
                            -0.005
                                                                                      0.001
 Genetics -> Cancer Environment -> Cancer 1 -> HPC1 1 -> PcaP 1 -> PG1 1 -> BMI 1 -> Pollution 1 -> Age
1
              -0.216
                                  191,918
                                              0.107
                                                        0.089 -0.14 -0.068
                                                                                         0.147
                                                                                                   -0.21
 1 -> Gleason 1 -> PSA Genetics ~~ Environment PcaP ~~ PG1 HPC1 ~~ HPC1 PcaP ~~ PcaP PG1 ~~ PG1
        -0.14 -0.226
                                        -0.209
                                                     0.264
                                                                186.676
                                                                               2 084
                                                                                           1.66
  BMI ~~ BMI Pollution ~~ Pollution Age ~~ Age Gleason ~~ Gleason PSA ~~ PSA Genetics ~~ Genetics
1
      1.938
                             1.053
                                        1.852
                                                        -2254.69
                                                                      3.448
                                                                                        -184.962
  Environment ~~ Environment Cancer ~~ Cancer
1
                      -0.001
                                      2277.82
```

• Choosing λ is still an issue

From	Linear	model	to	Path	model
000	000				

Latent variable

Model 0 000000 000 0000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Outline

SEM and Explanatory Factor Analysis Model modification

Constraints relaxation Adding constraint Model comparison

rom Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
00000	00000	0 000000 000 0000000	000 000000000 000	0 0000 0000

Model comparison

Usual model comparison tools are available

```
Nested model
  > anova(EstimModel.EstimModel.2)
  Chi-Squared Difference Test
                   AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
              Df
  EstimModel.2 16 2648.6 2700.7 20.315
  EstimModel 17 2659.7 2709.2 33.406 13.091 1 0.0002967 ***
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Non-nested model
  > AIC(EstimModel,EstimModel.2)
               df
                        AIC
  EstimModel 19 2659.647
  EstimModel.2 20 2648.556
```

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending
000000	00000	0 000000 000 0000000	000 000000000 000	0000

Outline

4 SEM and Explanatory Factor Analysis

Model modification Variable selection using R-square

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 000000000 000	0000000000

R-square

- What is the variance for Pollution explained by the model?
 - ► $R_{Pollution}^2 = \frac{\lambda_{Pollution}^2 \times \mathbb{V}[Env]}{\lambda_{Pollution}^2 \times \mathbb{V}[Env] + \mathbb{V}[Pollution]}$ $R_{Pollution}^2 = 0.007824397$
- Interpretation?
 - Pollution seems not to be correlated with the other manifest variables

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

R-square

- What is the variance for Pollution explained by the model?
 - $\mathsf{R}_{Pollution}^{2} = \frac{\lambda_{Pollution}^{2} \times \mathbb{V}[Env]}{\lambda_{Pollution}^{2} \times \mathbb{V}[Env] + \mathbb{V}[Pollution]} \\ \mathsf{R}_{Pollution}^{2} = 0.007824397$
- Interpretation?
 - Pollution seems not to be correlated with the other manifest variables

Latent variable

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis

Ending words 0 0000 0000

Remark on the importance of the constraint

- · Loading constraint should be carefully done
- > EstimModel.2.Pollution <- sem(FitModel.2.Pollution, myData)
 Warning messages:
 1: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable, :
 lavaan WARNING: the optimizer warns that a solution has NOT been found!</pre>

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	• 0000 0000

Outline

- **1** From Linear model to Path model
- 2 Latent variables
- 3 Model
- **4** SEM and Explanatory Factor Analysis
- **5** Ending words

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 •000 0000

Outline

5 Ending words Remarks on causality Conclusion

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Eight myths about causality and SEM (Bollen and Pearl, 2013)

• Although SEM aims at incorporating causal assumptions, their ability to infer causality is still a matter of debate

Latent variable

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis

Ending words

Eight myths about causality and SEM (Bollen and Pearl, 2013)

- Although SEM aims at incorporating causal assumptions, their ability to infer causality is still a matter of debate
- Here 8 myths :
 - **1** SEMs aim to establish causal relations from associations alone
 - SEMs and regression are essentially equivalent
 - 8 No causation without manipulation
 - **@** SEMs are not equipped to handle nonlinear causal relationships
 - 6 A potential outcome framework is more principled than SEMs
 - 6 SEMs are not applicable to experiments with randomized treatments
 - Mediation analysis in SEMs is inherently non causal
 - 8 SEMs do not test any major part of the theory against the data.

Latent variable

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysis 000 00000000000 000 Ending words

Myth #1: SEMs aim to establish causal relations from associations alone

- Inputs of SEM:
 - Qualitative causal assumptions
 - Empirical data
- Outputs of SEM
 - Failure to fit the data
 - Doubt on causal assumptions (e.g. zero coefficients or zero covariance)
 - o Guides to repair structural misspecifications
 - Fitting the data
 - o Not a proof of causal assumptions...but it makes more plausible

"Positive results need to be replicated and to withstand the criticisms of researchers who suggest other models for the same data"

Latent variab

Model 0 000000 000 00000000 SEM and Explanatory Factor Analysi 000 0000000000 000 Ending words

Tools for testing causality

- D-separation in graph theroy
 - Are two nodes independent given a set of others nodes?
 - Hardly applicable for SEM with latent variables
- Isolation and pseudo-isolation
- Temporal component of causality
 - ▶ Temporal priority should determining the direction of influence
 - An unsolvable issue for experimental design?

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Outline

5 Ending words Remarks on causality Conclusion

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analy
000000	00000	0	000
		000	000

Ending words

Take-home messages

- SEM is a tool for modeling (complex) systems via causal assumptions
- Design of models should not be performed with a pure statistical point-of-view
- SEM can used for CFA and EFA
- SEM are easy to use in R
- Modeling specification and estimation can lead to unusable models
 - Convergence issues
 - Constraint sensitivity
 - Negative variance
 - **.**..
- SEM does not solve causal inference

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Extensions

- Multilevel SEM modeling
- Meta-Analysis in SEM
 - testing the consistency of the estimates and effect sizes in different studies
 - estimation of a polled effect size
 - identification of potential moderators that influence the model's structure
- Multi-group SEM
- Latent growth curve modeling (LGCM)
- Non-linear SEM
 - Package piecewiseSEM

From Linear model to Path model	Latent variables	Model	SEM and Explanatory Factor Analysis	Ending words
000000	00000	0 000000 000 0000000	000 0000000000 000	0 0000 0000

Thank you for your attention!