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Examples of the use of SEM
• Economics, Social Science, Psychology

I Structural equation models and the quantification of behavior (Bollen et al., 2011)

• Ecology
I Structural Equation Modeling and Natural Systems (Grace, 2009)

I Applications of structural equation modeling in ecological studies (Fan, 2016)

• Medicine and Genomics
I Structural equation models for pathway identification (Xiong, 2001)

I Application of Structural Equation Models to GWAS (Kim et al., 2010)

I The mediating effects of public genomic knowledge in precision medicine

implementation: A structural equation model approach (Mogaka and Chimbari, 2020)

I Bayesian structural equation modeling in multiple omics data (Maity, 2020)

I A comparison of methods for inferring causal relationships between genotype and

phenotype using additional biological measurements (Ainsworth et al., 2017)

B. Shipley, Cause and correlation in Biology, 2016

• SEM is a tool for modeling a global system

• SEM is one of the most popular tool for investigating causality
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Outline

1 From Linear model to Path model

2 Latent variables

3 Model

4 SEM and Explanatory Factor Analysis

5 Ending words
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Introductive example :
Electroencephalography for Alzheimer’s patients

Multiple linear regression

• Three variables: z-scores for brain rate in the frontal region (=EEG), Age
and Systolic Blood Pressure (SBP)

• Linear regression

I EEG = β0 + β1Age + β2SBP + ε
I Coefficients (β0, β1 and β2) are estimated by minimizing the residual

variance
∑

(EEG − EEGMod)2

• From a system point-of-view

I Age and SBP values are determined outside the model and are
imposed on the model (=Exogeneous variables)

I EEG values are determined by the model (=Endogeneous variable)
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Introductive example :
Electroencephalography for Alzheimer’s patients

DAG visualisation

• Visualisation using a Directed Acyclic Graph (DAG)

EEG = β0 + β1Age + β2SBP + ε
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Introductive example :
Electroencephalography for Alzheimer’s patients

Multivariate regression

• 6 measures for EEG: 3 regions (frontal, temporal, central)
and 2 features (brain rate, complexity)
• Multivariate regression (∼ Manova)

I Basics for the estimation: minimizing the distance
between the observed covariance for “response”
variables and the model covariance

• DAG for a multivariate regression model
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Introductive example :
Electroencephalography for Alzheimer’s patients

Path modeling (1)

• “An increase in (systolic) blood pressure has always been taken as an
inevitable consequence of ageing” (Pinto, 2007)
• How can we modify the modeling of the system?

• SBP is now an endogeneous variable
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Introductive example :
Electroencephalography for Alzheimer’s patients

Path modeling (2)

• Measurement error is also accounted for SBP and Age

Paradigm shift

• In path modeling, all observed variables in the system are considered in
the estimation of the model

• The aim is to model the covariance matrix
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Football example

• How to define a strategy of success?

• Data obtained from all teams in an entire season.

Mathieu Emily - NetBio - 16 mars 2021 11/58



From Linear model to Path model Latent variables Model SEM and Explanatory Factor Analysis Ending words

Football example
The concept of Success

• Success is easy to observe/measure but understanding how to achieve
success is more complicated

I Attack strategy
I Defense strategy
I Adapt to the opponent

• 4 variables are related to concept the success: WMH, WMA, LWR and
LRWL
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Football example
Latent modeling

• Similarly, the concepts of Attack and Defense can be modeled as:

I Attack: GSH, GSA, SSH and SSA
I Defense: GCH, GCA, CSH and CSA

• How to link observed and/or latent variables?
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Structural model
• A structural model is made by 2 models:

• Each arrow is a linear link between variables:
I Success = f (Attack,Defense) = β1Attack + β2Defense + ε
I GSH = f (Attack) = γ1Attack + ε
I ...

• Remark: Success is an endogeneous latent variable while Attack and
Defense are two exogeneous latent variables.

Latent model
Measurement model
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1 From Linear model to Path model

2 Latent variables

3 Model

4 SEM and Explanatory Factor Analysis

5 Ending words
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Outline

3 Model
General definition
Identification rules
Estimation and tests
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Latent model
• Let consider a model with m endogeneous latent variables and n

exogeneous variables
η = Bη + Γξ + ζ

I B is a m ×m matrix of coefficients for latent endogeneous variables
I Γ is a m × n matrix of coefficients for latent exogeneous variables
I Φ = E[ξξ′] is a n × n covariance matrix for ξ
I Ψ = E[ζζ′] is a m ×m covariance matrix for ζ

• Assumptions:
I E[η] = 0
I E[ξ] = 0
I E[ζ] = 0
I Cov(ζ, ξ) = 0
I (I − B) nonsingular
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Measurement model
• Let consider a model with p endogeneous observed variables and q

exogeneous observed variables

x = Λxξ + δ

y = Λyη + ε

I Λx is a q × n matrix of coefficients relating x to ξ
I Λy is a p ×m matrix of coefficients relating y to η
I Θδ = E[δδ′] is a q × q covariance matrix for δ
I Θε = E[εε′] is a p × p covariance matrix for ε

• Assumptions:
I E[δ] = 0
I E[ε] = 0
I Cov(δ, ε) = 0
I Cov(δ, ζ) = 0 and Cov(δ, ξ) = 0
I Cov(ε, ζ) = 0 and Cov(ε, ξ) = 0
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Toy example of prostate cancer

Observed variables:

• Gleason score from biopsy

• PSA test from a blood sample

• HPC1 (hereditary prostate cancer 1) expression

• PcaP (predisposing for prostate cancer) expression

• PG1 (prostate cancer susceptibility gene 1) expression

• BMI

• Exposure to pollution

• Age
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Toy example of prostate cancer

Observed variables:

• Gleason score from biopsy

• PSA test from a blood sample

• HPC1 expression

• PcaP expression

• PG1 expression

• BMI

• Exposure to pollution

• Age

Cancer measures

Genetic measures

Environnemental measures
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Toy example of prostate cancer

B =
[
0
]

Γ =

[
β11

β21

]

Λx =


λx

11 0
λx

21 0
λx

31 0
0 λx

12

0 λx
22

0 λx
32


Λy =

[
λy

11

λy
21

]
Φ =

[
φ11 φ12

φ21 φ22

]
Ψ, Θδ and Θε are diagonal

Mathieu Emily - NetBio - 16 mars 2021 20/58



From Linear model to Path model Latent variables Model SEM and Explanatory Factor Analysis Ending words

Covariance implied by the model
• Examples

Cov(HPC1,PSA) = Cov(λx
11Genetics + δ11, λ

y
21Cancer + ε2)

= λx
11λ

y
21Cov(Genetics,Cancer)

= λx
11λ

y
21Cov(Genetics, β11Genetics + β21Environ.+ ζ1)

= λx
11λ

y
21β11φ11 + λx

11λ
y
21β21φ12

Cov(HPC1,PG1) = Cov(λx
11Genetics + δ11, λ

x
31Genetics + δ31)

= λx
11λ

x
31φ11

• Similarly, all covariances can be obtained thus leading to the implied
covariance Σ(θ) where θ is the set of unknown parameters of the model

Estimation principle

• Choosing θ for Σ(θ) to be as close to S as possible
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Outline

3 Model
General definition
Identification rules
Estimation and tests
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Issue with identification

• θ is identified if 6 ∃ θ1 and θ2 such as Σ(θ1) = Σ(θ2)
• Example:

HPC1 PcaP PG1

HPC1 (λx
11)2φ11 + Θδ

11

PcaP λx
11λ

x
21φ11 (λx

21)2φ11 + Θδ
22

PG1 λx
11λ

x
31φ11 λx

21λ
x
31φ11 (λx

31)2φ11 + Θδ
33

• 7 parameters for only 6 observations: a need for constraint
I Set the variance of the latent variable to 1 (φ11 = 1)
I Set λx

11 = 1 to scale the Genetics to HPC1
I Set λx

11 = λx
21 = λx

31 to balance the amount of variance/covariance in
the latent space (τ−equivalence)
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Conditions for identification (Bollen, 1989)

• The t − rule

t ≤ (p + q)(p + q + 1)

2
where t is the number of free parameters in θ

I A necessary but not sufficient condition (t = 19 in the general
prostate model with p + q = 8 observed variables)

• Two-Step rules
I Step 1 : Consider y and η as exogeneous variables (CFA)

◦ Three-indicator rule
◦ Two-indicator rule

I Step 2 : Consider the identification as the latent model (as a
measurement model)

I A sufficient condition

• MIMIC rule (for Multiple Indicators and MultIple Causes model)
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Estimation
The closeness of Σ(θ) to S is measured by fitting functions F (S ,Σ(θ)) (with
F ≥ 0 and F = 0 iif Σ(θ) = S)

• ML (Maximum Likelihood)

FML = log |Σ(θ)|+ tr(SΣ−1(θ))− log |S | − (p + q)

I Asymptotically unbiased
I Consistent
I Asymptotically efficient
I Scale freeness
I Availibity of a Confidence Interval

• ULS (Unweighted Least Squares)

FULS =
1

2
tr
(

[S −Σ(θ)]2
)

• GLS (Generalized Least Squares)

FGLS =
1

2
tr

([
I −Σ(θ)S−1

]2
)
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lavaan R package - syntax and estimation

• Package loading
> library(lavaan)

• Model specification
> FitModel <- ’

Genetics =∼ HPC1+PcaP+PG1

Environment =∼ BMI+Pollution+Age

Cancer =∼ Gleason+PSA

Cancer ∼ Genetics+Environment

Genetics ∼∼ Environment

’

• Model estimation
> EstimModel <- sem(FitModel, myData)
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semPlot R package - visualisation

> library(semPlot)

> semPaths(EstimModel,what="est",sizeLat=10,edge.label.cex = 1,sizeMan=10)
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Global summary

> summary(EstimModel)
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Global Fit Measures

• Principle: comparaison with the saturated model

I Ms : Saturated model: no latent variable and one parameter for each
variance/covariance for manifest variables

I D = −2(`(M)− `(Ms)) ∼H0 χ
2(df )

I p = 0.010: the model is rejected

• Other measures are proposed but “their purpose is to determine the
degree to which the rejected model is approximately correct” (Shipley,
2016):

I RMSEA (Root Mean Square Error of Approximation)
I CFI (Bentler’s comparative fit index)
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Sample size: N

• Determining the sample size: a challenge faced by investigators, peer
reviewers, and grant writers

• In the early 80’s (Boomsma, 1985)

I Reasonable results could be obtained with N of the order of 100

• In the late 1980’s: Bollen consider the N:q ratio (where q is the number
of free parameters)

I N : q = 5 seems to be enough for normally distributed variables
I N : q = 10 seems to be enough for other distribution

• More recent simulation-based results show the complex interplay between
(Wolf et al., 2013, Deng et al., 2018)

I Effect of number of factors
I Effect of number of indicators
I Effect of magnitude of factor loadings and regression paths
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Interpretation

The proposed model is rejected: game over?

• Yes in Confirmatory Factor Analysis (CFA)

I The model is not confirmed by observed data

• No in Explanatory Factor Analysis (EFA)

I How can we propose a more likely model?
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1 From Linear model to Path model

2 Latent variables

3 Model

4 SEM and Explanatory Factor Analysis

5 Ending words
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Caution with coefficients summary

• By default, latent variables are of the scale of “its” first manifest variable
I Interpretation depends on the constraint
I Changing the constraint on the latent variable does not modify the

global fit
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Residuals

• PcaP and PG1 are badly fitted
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Outline

4 SEM and Explanatory Factor Analysis
Model modification
Variable selection using R-square
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Outline

4 SEM and Explanatory Factor Analysis
Model modification

Constraints relaxation
Adding constraint
Model comparison
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Modification Indices

• A model can be modified by relaxing fixed coefficients

• Modification index is based on Lagrangian multiplier (LM)

> modindices(EstimModel)
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Stepwise approach using modification indices

• Freeing Cancer =∼ HPC1 and Cancer =∼ PcaP is nonsense

• We try to add a covariance between PcaP and PG1
> FitModel.2 <- ’

Genetics =∼ HPC1+PcaP+PG1

Environment =∼ BMI+Pollution+Age

Cancer =∼ Gleason+PSA

Cancer ∼ Genetics+Environment

Genetics ∼∼ Environment

PcaP ∼∼ PG1

’

• Global fit measure
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Updated DAG
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Constraint modification with lavaan
• Freeing latent coefficient: Genetics =∼ NA*HPC1+PcaP+PG1

• Fixing latent variance: Genetics ∼∼ 1*Genetics

• Global fit remains unchanged
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4 SEM and Explanatory Factor Analysis
Model modification

Constraints relaxation
Adding constraint
Model comparison
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Modification of the models based on coefficient testing

• Latent model

I The estimated covariance between Genetics and Environnement is
not significant

• Measurment model

I The loading between Pollution and Environnement is not significant
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Regularized SEM
• Jacobucci (2019) has proposed a regularized version of SEM:

FReg
ML = log |Σ(θ)|+ tr(SΣ−1(θ))− log |S | − (p + q) + λP(.)

I where P(.) is a penalized function (for ex. Lasso, Ridge, ...)

> fitRegSem <- regsem(EstimModelRegSem, lambda=1,

type="lasso", pars pen=c("regressions","loadings"))

> fitRegSem$coefficients

• Choosing λ is still an issue
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4 SEM and Explanatory Factor Analysis
Model modification

Constraints relaxation
Adding constraint
Model comparison
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Model comparison
Usual model comparison tools are available

• Nested model

• Non-nested model

• ...
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R-square

• What is the variance for Pollution
explained by the model?

I R2
Pollution =

λ2
Pollution×V[Env ]

λ2
Pollution

×V[Env ]+V[Pollution]

R2
Pollution = 0.007824397

• Interpretation?

I Pollution seems not to be correlated
with the other manifest variables
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Remark on the importance of the constraint

• Loading constraint should be carefully done
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Outline

1 From Linear model to Path model

2 Latent variables

3 Model

4 SEM and Explanatory Factor Analysis

5 Ending words
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Outline

5 Ending words
Remarks on causality
Conclusion
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Eight myths about causality and SEM (Bollen and Pearl, 2013)

• Although SEM aims at incorporating causal assumptions, their ability to
infer causality is still a matter of debate

• Here 8 myths :

1 SEMs aim to establish causal relations from associations alone
2 SEMs and regression are essentially equivalent
3 No causation without manipulation
4 SEMs are not equipped to handle nonlinear causal relationships
5 A potential outcome framework is more principled than SEMs
6 SEMs are not applicable to experiments with randomized treatments
7 Mediation analysis in SEMs is inherently non causal
8 SEMs do not test any major part of the theory against the data.
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Myth ]1: SEMs aim to establish causal
relations from associations alone

• Inputs of SEM:

I Qualitative causal assumptions
I Empirical data

• Outputs of SEM
I Failure to fit the data

◦ Doubt on causal assumptions (e.g. zero coefficients or zero covariance)
◦ Guides to repair structural misspecifications

I Fitting the data
◦ Not a proof of causal assumptions...but it makes more plausible

“Positive results need to be replicated and to withstand the criticisms of
researchers who suggest other models for the same data”
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Tools for testing causality

• D-separation in graph theroy

I Are two nodes independent given a set of others nodes?
I Hardly applicable for SEM with latent variables

• Isolation and pseudo-isolation

• Temporal component of causality

I Temporal priority should determining the direction of influence
I An unsolvable issue for experimental design?
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Take-home messages

• SEM is a tool for modeling (complex) systems via causal assumptions

• Design of models should not be performed with a pure statistical
point-of-view

• SEM can used for CFA and EFA

• SEM are easy to use in R

• Modeling specification and estimation can lead to unusable models

I Convergence issues
I Constraint sensitivity
I Negative variance
I ...

• SEM does not solve causal inference
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Extensions

• Multilevel SEM modeling

• Meta-Analysis in SEM

I testing the consistency of the estimates and effect sizes in different
studies

I estimation of a polled effect size
I identification of potential moderators that influence the model’s

structure

• Multi-group SEM

• Latent growth curve modeling (LGCM)

• Non-linear SEM

I Package piecewiseSEM
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Thank you for your attention!
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