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Biological context

Microbial composition reflects :

environment,

lifestyle,

metabolism,

diseases,

Diseases associated with imbalance microbiota :

Cardio-vascular diseases,

Kidney diseases,
Metabolic diseases.

Obesity,
Diabetes,
Cirrhosis.

Objective
Find biological signatures related to the development of metabolic and
cardiovascular diseases
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Biological system modelling

A biological system with :

p quantitative variables : X1, . . . ,Xp,

n observations : Xj
1, . . . ,X

j
n, j ∈ J1, pK,

modeled by undirected graphs G(V,E) with no self-loops where :

one vertex=one gene or metagene,

one edge=one connection between two genes,

V = {1, . . . , p} and E are the vertices and edges set.

Objective :
Model the functional relationships between the composing elements of the
system,

Emphasize major interactions,

Understand the underlying biological processes.
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Graph Clustering

Graph Clustering
From a graphical point of view, cluster vertices into groups that are densely
connected and share a few links (comparatively) with the other groups,

From a biological point of view, discover groups of genes with similar
characteristics to better understand a disease.

Wide range of very popular clustering algorithms based on graph-theory :

Partitioning algorithms (k-means) : classify nodes into a predefined number
of groups based on a similarity measure (MacQueen, 1967),

Spectral clustering algorithms : use the spectral properties of the graph to
recover the graph structure (Luxburg, 2007).
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Contributions

1 CORE-clustering algorithms and applications,

Algorithms for the detection of representative variables in complex systems,

Application to simulated data and a road network.

2 `1-spectral clustering algorithm and applications,

A robust spectral clustering using LASSO regularization,

Application to simulated data and kidney cancer.

3 Human liver microbiota modeling strategy at the early onset of fibrosis.
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Detection of Representative Variables in Complex Systems
with Interpretable Rules Using Core-Clusters

CORE-clustering algorithm
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Graph-based representation, issues and objective

A complex system (n << p) modeled by an undirected weighted graph G(V,E)
made of a set V of vertices (X1, . . . ,Xp) and a set E of edges.

Goal : Detection of interpretable cluster structures in a high
dimensional graph

Issues
Instability due to the high complexity of the
system,

Choice of the granularity level,

Interpretability of the clusters found.

Key solution : Robust detection of clusters structured around representative variables
of the complex system
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Coherence in a subset

Definition

A path P of a graph G from Xi to Xj of length Λ is a list of indices

{d1, . . . , dΛ} ⊂ J1, pK such that :

{
Xi = Xd1 ,

Xj = XdΛ .

Definition
The path capacity c(P) is the minimal weight of the edges through which P passes :

cap(P) = min
l=1,...,Λ−1

wdl,dl+1 . (1)
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Coherence in a subset

Definition

The coherence c(Xi,Xj) between Xi and Xj is defined by considering the path P
having the maximum capacity among the paths of Pi,j :

c(Xi,Xj) = max
P∈Pi,j

cap(P). (2)
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Definition
The coherence c(S) of the variable subset S is the minimal coherence between the
variables it contains :

c(S) = min
(Xi,Xj)∈S2

c(Xi,Xj). (3)
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CORE-Clusters

Definition
A CORE-cluster is a variable subset S ⊂ X respecting the following
properties :

its size is in the range [τ, 2τ − 1],
its coherence is higher than a threshold ξ.

}
τ and ξ are tuning parameters

A representative variable is defined as centred CORE-cluster center..

Estimation of an optimal set of CORE-clusters Ŝ = {Ŝu}u∈{1,...,Û} :

(
Ŝ, Û

)
= arg max

(S,U)

U∑
u=1

c(Su) (4)

under the two constraints :

1 CORE-clusters Su
ξ,τ have a size higher than τ and a coherence c(Su

ξ,τ ) > ξ,

2 No overlap between the clusters, i.e. ∀(u1, u2) ∈ {1, . . . ,U}2, Su1 ∩ Su2 = ∅.
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Maximum Spanning Tree (Kruskal, 1956)

Definition

A spanning tree G(V, T) is a connected subgraph of G(V,E) with

{
no cycle,
T ⊂ E.

A maximum spanning tree of G is the spanning tree of G having the maximal
sum of edge weights
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Core-clustering algorithm main steps

Input parameters :

Minimal dimension of the core-clusters (τ )

Minimum level of similarity which gathers their variables (ξ)

Data matrix
(Xj

i)1≤i≤n,1≤j≤p

Undirected Weighted
graph G(V,E)

wi,j = Pearson’s correlation

Sort increasing
weight

Maximum Spanning
Tree G(V,T)

Core clusters detection
from G(V, T)

Representative
variables detection

τ

ξ

Standard CORE-clustering algorithm
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Core-clustering algorithm main steps

Input parameters :

Minimal dimension of the core-clusters (τ )

Minimum level of similarity which gathers their variables (ξ)

Data matrix
(Xj

i)1≤i≤n,1≤j≤p

Undirected Weighted
graph G(V,E)

wi,j = Pearson’s correlation

Sort decreasing
weight

Maximum Spanning
Tree G(V,T)

Core clusters detection
from G(V, T)

Representative
variables detection

τ

ξ

Greedy CORE-clustering algorithm
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Core detection in synthetic data

CORE-c. (Alg. 2) Greedy CORE-c. (Alg. 3)

(a)

(b)

(c)

Spectral clusteringLouvain algo.

FIGURE – (a) Two simulated clusters with noise levels ranging from 0.25 to 1.5. (b) Same as
(a) with five simulated clusters. (c) Five clusters simulated using 30, 15, 10 and 5 observations
of [250, 500] variables and a noise level of 0.5.
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`1-spectral clustering : a robust spectral
clustering using LASSO regularization

`1-spectral clustering algorithm
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Graph-based representation, issues and objective

A system modeled by an undirected unweighted graph G(V,E) made of a set V of
vertices (X1, . . . ,Xp) and a set E of edges.

Goal : Detection of interpretable cluster structures in a noisy
graph

Issues
Noise sensitivity of spectral clustering
algorithm,

Choice of the number of clusters,

Interpretability of the clusters found.

Key solution : Detection of cluster structures in a noisy graph using a spectral
clustering variant

16/32



Introduction Core-clustering algorithm Spectral clustering Statistical study Fibrosis Conclusion and outlooks

Adjacency and Laplacian matrices

Definition
The adjacency matrix A of G is defined as :

∀(i, j) ∈ J1, pK2, Aij =

{
1 if (i, j) ∈ E,
0 otherwise.

Definition

The degree di of vertex Xi is the number of edges incident to i

di =

p∑
j=1

Aij and D as the associated degree matrix.

The Laplacian matrix L of G is defined as : L = D− A, where D the degree
matrix and A the adjacency matrix associated to G.
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Graphs : assumptions

The unknown structure of the graph G to cluster is assumed to be made of k
connected components C1, ...,Ck.
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Graphs : assumptions
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connected components C1, ...,Ck.
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Perturbed graph : Let Ĝ be a perturbed version of G, obtained by adding/removing
an edge between/inside components of the graph with probabilities
(pin, pout) ∈ [0, 1]2.
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Spectral clustering algorithm

Properties of the Laplacian matrix
L is symmetric and positive semi-definite,

L has p non-negative real-valued eigenvalues λ1, ..., λp,

The smallest eigenvalue of L is 0.

Proposition
The eigenvalue 0 of L is of multiplicity k (number of connected components),

The associated eigenvectors correspond to the indicator vectors (1Ci )1≤i≤p of
the k components.

Goal : Cluster the nodes of a graph G(V,E) into k communities

L

SVD

eigenvalue

0

k-means
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Advantages, issues and alternatives

Advantages and issues : Spectral clustering on the perturbed version of the graph

Refinements using the normalized versions of the Laplacian matrix
(Symmetric, Random Walk normalized Laplacian matrices,...),

Powerful computational results,

Theoretical convergence results,

High sensitivity and no guarantee of recovering the true components in case
of large perturbations.

Alternatives : Development of the `1-spectral clustering new algorithm

Laplacian matrix replaced by Adjacency matrix,

k-means procedure replaced by the selection of relevant eigenvectors,
solutions to specific `1-minimization problems.
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Theoretical results I

We denote by

λ1, ..., λp the p eigenvalues of the adjacency matrix A,

v1, ..., vp the associated eigenvectors,

Vk the eigenspace generated by the k largest eigenvectors :

Vk = Span(vn−k+1, ..., vp).

Proposition
The minimization problem (P0)

arg min
v∈Vk\{0}

‖v‖0

has a unique solution (up to a constant) given by 1C1 .

22/32



Introduction Core-clustering algorithm Spectral clustering Statistical study Fibrosis Conclusion and outlooks

Theoretical results II

We denote by

λ1, ..., λp the p eigenvalues of the adjacency matrix A,

v1, ..., vp the associated eigenvectors,

Vk the eigenspace generated by the k largest eigenvectors :

Vk = Span(vn−k+1, ..., vp).

From now on, we assume that we know a node belonging to each component, called
representative element and denoted by (i1, ..., ik). Let Ṽk be :

Ṽk := {v ∈ Vk, vi1 = 1}.

Proposition
The minimization problem (P1)

arg min
v∈Ṽk

‖v‖1

has a unique solution given by 1C1 .
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Theoretical results III

Proposition

Let Uk := (v1, ..., vp−k) the matrix formed by the eigenvectors associated with the
p− k-smallest eigenvalues. We denote by wT its first row and WT the matrix obtained
after removing wT from Uk :

Uk := (v1, ..., vp−k) =

b

wT

WT b

 (5)

The minimization problem
arg min

v∈Rp−1

Wv=−w

‖v‖1 (P̃1)

has a unique solution v∗ such that (1, v∗)T = 1C1 .
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`1-spectral clustering algorithm main steps
Input parameters :

Number of clusters k̂ to recover,
(ij)j∈{1,...,̂k} family of representative elements of each cluster found using a
betweeness centrality score.

Adjacency
matrix A

SVD
vap (λ1, . . . , λp)
Vep (v1, . . . , vp)
increasing order

Solve `1-minimization problem
(PLasso)

Detection of the indicators (1̂Cj )1≤j≤k̂

of the k̂ connected components

k̂

(ij)j∈{1,...,̂k}

`1-clustering algorithm
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Comparison with state-of-the-art

FIGURE – Simulation of 100 versions of the same perturbed graphs with p = 50 variables,
k = 10 components and perturbations pin and pout of removing/introducing an edge
from/between components varying from 0.01 to 0.5.
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Modeling of liver microbiota
at the early onset of human fibrosis

Statistical study of liver fibrosis cohort
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Overview

A 82 cohort affected, at various stages, by liver fibrosis :

F0 : no Fibrosis

F1 : minor Fibrosis

F2 : moderate Fibrosis

Liver Fibrosis
Formation of an abnormally large amount of scar tissue in the liver. It occurs when
the liver attempts to repair and replace damaged cells.

Goal : Identify the patients’ clinical phenotypic profile and the
microbial species involved in the early onset of the disease
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Datasets

Clinical features :

Hypertension

Dyslipidemia

Diastolic

Systolic

Diabete

Blood-glucose

Age

Metagenomic features :

OTU table count
at different levels

Taxonomy

Definition (Operational Taxonomic Units)

Cluster of similar sequence variants of the 16S rDNA marker gene sequence (97%).

1 DNA extraction,
2 16S gene amplification + sequencing of some regions,
3 Partitionning of reads (nucleotide sequences) into OTUs,
4 Taxonomic assignations.
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Statistical analysis adapted to metagenomic datasets

Exploratory analysis (PCA, (Pearson,
1901)),

Goal : Identify clinical phenotypic and
bacterial profile of fibrotic patients

Discriminant analysis (PLS-DA and
variants, (Barker and Rayens, 2003)),

Goal : Detect microbial species and
functional metabolic pathways involved

in the development of the disease

Fair exploratory and discriminant
analysis (fair PCA, `1-spectral
clustering and fairlet clustering),

Goal : Address the bias effect generated
by the population’s diversity and explain

the total variabilities in the dataset

A B

C D

Figure 6, Champion et al 
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Conclusion and outlooks

Work already done and under development :

Development of two graph clustering algorithms to detect highly connected
groups of variables :

Core-clustering within a high dimensional complex system,
`1-spectral clustering within a noisy graph.

Statistical analysis of a cohort of liver fibrotic patients to discover biological
signatures categorizing patients in the disease :

Standard exploratory, discriminant, clustering methods (PCA, PLS-DA),
New fair approach based on exporatory and regression techniques,

Perspectives :

Adaptation and application of graph clustering methods (CORE-clustering and
`1-spectral clustering) to bacterial datasets.
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Thanks for your attention !
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