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Motivation

Data

• Collection X = {. . . ,Xm, . . . }, m ∈ M of M = |M| networks
• Same type:

• Simple, Bipartite. . .
• Undirected, Directed: Food web, Advice network

• Same value type:
• Binary (Bernoulli), Count (Poisson). . .
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Objective Find a common connectivity structure

Question Is the common structure relevant?

Objective Partition networks by connectivity structures

Method Joint modeling with Stochastic Block Model (SBM)
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Stochastic Block Model



Stochastic Block Model (Snijders and Nowicki, 1997)

Let (Xij) be an n adjacency matrix

Latent variables

• The nodes i = 1, . . . , n are partitionned into Q clusters

• Zi = q if node i belongs to cluster (block) q

• Zi independant variables

P(Zi = q) = πq

Conditionally to (Zi )i=1,...,n...
(Xij) independant and

Xij |Zi = q,Zj = r ∼ Bern(αqr )
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Stochastic Block Model : illustration
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Parameters
Let n nodes divided into 3 clusters

• {•, •, •} clusters

• π• = P(i ∈ •), i = 1, . . . , n

• α•• = P(i ↔ j |i ∈ •, j ∈ •)

X ∼ SBMn(Q, π, α)
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Three food webs

• Pine-forest stream food webs issued from Maine and North-Carolina
(Thompson and Townsend, 2003)

• Involve respectively 105, 58 and 71 species.

• Xij = 1 if i is eaten by j . Directed relation

• Look for similarities and differences between network structures.
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Separate SBMs

• Fitted SBM on each separately

• Reordered the matrices following the blocks

• Label the blocks following the average out-degrees order
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Separate SBMs

• Two bottom groups in each matrix are basal species : eaten by many
species and not eating anybody.

• • Martins: 5 blocks, the third one is a medium trophic level, which
preys on basal species and is highly preyed by species of the 1st
block.

• Cooper. Higher trophic levels grouped together in the same block
(lack of statistical power).

• Herlzier: higher trophic level is separated into 2 blocks determined
on how much they prey on the less preyed basal block. 8



Modeling a Collection of
Networks



Towards a joint modeling of the networks

• Need to model jointly the networks

• Identify the groups playing the same role through out the networks,
with an unsupervised strategy.

• Let (Xm)m=1,...,M denote the collection of networks each involving
nm nodes.

• (Xm) independent.

•
Xm ∼ SBMnm(Qm, π

m, αm)

• Conditions on the parameters (πm)m=1,...,M and (αm)m=1,...,M
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First naive model

iid-colSBM

Xm ∼ SBMnm(Q, π, α)

with πq > 0 ∀q ∈ {1, . . . ,Q} and
∑Q

q=1 πq = 1.

• Same blocks proportions

• Same connectivity structure

• (Q − 1) + Q2 unknown parameters, M clustering

• i.i.d. assumption too strict for most datasets, 2 new mechanisms:
• Free proportion of blocks between networks
• Density varies between networks
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A first relaxed model : π-colSBM

π-colSBM

Xm ∼ SBMnm(Q, π
m, α)

• Same structure of connection α

• Specific proportions of blocks in each network

On the block proportions

• πm
q ≥ 0

• If πm
q = 0 then block q is not represented in network m
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π-colSBM: different proportions

M = 2 networks

α =

α11 α12 α13

α12 α22 α23

α13 α23 α33

 π1 = [.25, .25, .50]

π2 = [.20, .50, .30]
.

• Same connection structure between blocks

• Different block proportions

• 2× (3− 1) + 32 = 15 parameters.
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π-colSBM: nested structures

πm
q ≥ 0

α =

α11 α12 α13

α12 α22 α23

α13 α23 α33

 π1 = [.25, .25, .50]

π2 = [.40, 0 , .60]
.

• Blocks 1 and 3 are represented in the two networks while block 2
only exists in network 1.

• 3− 1+ 3− 2+ 32 = 14 parameters
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π-colSBM: partially nested structures

α =

α11 α12 α13

α21 α22 ·
α31 · α33

 π1 = [.25, .75, 0 ]

π2 = [.40, 0 , .60]
.

• The two networks share block 1 (for instance super predators or
basal species)

• The remaining nodes of each network not equivalent in terms of
connectivity.

• Blocks 2 and 3 never interact because their elements do not belong
to the same network and so α23 and α32 are not required to define
the model.

• (2− 1) + (2− 1) + 7 = 11 parameters.
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Number of parameters

Let S be the support M × Q matrix such that

Smq =

{
1 if πm

q > 0

0 otherwise .

Then,

Nb(π-colSBM) =
M∑

m=1

(
Q∑

q=1

Sqm − 1

)
+

Q∑
q,r=1

1(S′S)qr>0
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Varying density model : δ-colSBM

δ-colSBM

Xm ∼ SBMnm(Q, π, δ
mα)

with πq > 0.

• Similar intra- and inter blocks connectivity patterns

• Network specific density density parameter. δ1 = 1

• Mimics differences of effort sampling or abundances

• (Q − 1) + Q2 + (M − 1) parameters.
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Varying density and block proportion model

δπ-colSBM

Xm ∼ SBMnm(Q, π
m, δmα)

with πm
q ≥ 0

• Most flexible model

• Nb(π-colSBM) + (M − 1) parameters.
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Summary

M independent networks.

Xm ∼ SBMnm(Q, π
m, αm)

Model name Block prop. Connexion param. Nb of param.
iid-colSBM πm

q = πq , πq > 0 αm
qr = αqr (Q − 1) + Q2

π-colSBM πm
q , πm

q ≥ 0 αm
qr = αqr ≤ M(Q − 1) + Q2

δ-colSBM πm
q = πq , πq > 0 αm

qr = δmαqr (Q − 1) + Q2 + (M − 1)
δπ-colSBM πm

q , πm
q ≥ 0 αm

qr = δmαqr ≤ M(Q − 1) + Q2 +M − 1
sep-SBM πm

q , πm
q > 0 αm

qr

∑M
m=1(Qm − 1) + Q2

m

where Qm =
∑M

m=1 Smq
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Summary

M independent networks.

Xm ∼ SBMnm(Q, π
m, αm)
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Identifiability

Proven for separated SBMs (Celisse et al., 2012)

Demonstrated for all colSBMs, upto label switching of the blocks and
permutation of the networks, under light conditions.

For π-colSBM, let us define Qm = {q ∈ {1, . . . ,Q}|πm
q > 0}.

1. ∀m : nm ≥ 2|Qm|
2. (α · πm)q 6= (α · πm)r for all (q 6= r) ∈ Q2

m

3. ∀q = 1, . . . ,Q, ∃m : q ∈ Qm

4. Each diagonal entry of α is unique
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Inference, Model Selection and
Partition of Networks



Maximum Likelihood Inference

For fixed Q, support S , θ = {α, π, δ}:

Objective Joint clustering of Z = {Z 1, . . . ,ZM} and estimates of θ

Method Maximum likelihood of the observed data

Idea Compute complete likelihood and integrate on Z

Problem Intractable, sum of
∏

m∈M |Qm|nm terms

Solution EM algorithm

Problem L(Z|X) also intractable

Solution Variational approach of the EM algorithm

Daudin et al. (2008)
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Variational bound

`(X;θ) ≥
∑
m∈M

`(Xm;θ)− DKL(R(Zm)‖p(Zm|Xm))

=
∑
m∈M

(ER[`(Xm,Zm;θ)] +H(R(Zm))) =: J (R(Z),θ).

R(Z) is a mean-field approximation of Z|X
H is the entropy
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Variational EM

V-EM algorithm
2 steps iterative algorithm, for each m ∈M:

VE Maximize J (R(Zm),θ) w.r.t. R(Z)
M Maximize J (R(Z),θ) w.r.t. θ

• VE -step are independent for each network

• Introduce stochasticy in the V-EM algorithm

• (δ–δπ)colSBM: M–Step not explicit for Bernoulli model

• M-step explicit for Poisson model, very good when:
• networks have few interactions by nodes
• Goal is the clustering of nodes
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Model selection

Penalized model-based criterion

• To choose Q or S

• To determine if common structure is relevant

• Based on Integrated Classification Likelihood (ICL)

• Modified to not penalize fuzzy clustering

• Adapted to allow for empty blocks

• Straightforward iid-colSBM and the δ-colSBM

BIC -L(Q,S) = J (τ̂ , θ̂)− pencolSBM

Biernacki et al. (2000)
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Penalty for (π-δπ)colSBMs

• πm
q possibly null. Asymptotic approximation do not hold

• Each couple (Q,S) defines a model

• Penalty on the size of the model space

pen
πcolSBM =

1
2

M∑
m=1

(Qm − 1) log(nm)︸ ︷︷ ︸
penπ

+
1
2

(
Q∑

q,r=1

1(S′S)qr>0 + ν(δ)

)
log

(
M∑

m=1

nm(nm − 1)

)
︸ ︷︷ ︸

pen(α,δ)

+
M∑

m=1

log

(
Q

Qm

)
+M log(Q)︸ ︷︷ ︸

pen(Q,S)

,

where ν(δ) = M − 1 for δπcolSBM and 0 for πcolSBM.
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Relevance of the joint modeling

Common structure is relevant if:

M∑
m=1

max
Qm

BIC -LSBM(Qm) < max
(Q,S)

BIC -LcolSBM(Q,S)
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Partition of networks

• Some networks may share common connectivity structure

• Group networks sharing the same structure

• Find the partition with the highest BIC -L

G a partition ofM in G groupsM1, . . . ,MG .

G∗ = arg max
G∈P(M)

G∑
g=1

max
(Qg ,Sg )

BIC -L(Qg ,Sg |Mg )
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Applications to food webs



Application on the stream food webs

Separate sbm
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Model choice

Model BIC-L
sepSBM −2080

iid-colSBM −1966
π-colSBM −1982
δ-colSBM −1969
δπ-colSBM −1989

• Reject sepSBM : common structure in the networks
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colSBMs on stream food webs

Top left : iid-colSBM (−1966). Top right: π-colSBM (−1982) Bottom-left: δ-colSBM

(−1969). Bottom-right: δπ-colSBM (-1989)

• iid-colSBM : prefered model. Make 5 blocks
• π-colSBM: block proportion quite similar. Make no use of its

flexibility
29



Partition of Predation Networks

• M = 67 networks from Mangal database (Vissault et al., 2020)
• 31 to 106 species nodes
• Density range in [.01, .32]
• Modeling the collection with πcolSBM
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Take Home Message

• Joint modeling of a collection of networks with colSBMs
• Find a common structure between the different networks
• Identify blocks between networks
• Improve prediction of missing data (see arXiv paper soon)
• Application in sociology: advices between judges, lawyers, priests or

researchers

• Extension to other types of networks: bipartite, multipartite. . .

• Dealing with covariates on nodes, edges and networks

• Effect on common statistics: modularity, nestedness, reciprocity,
robustness. . .

Any questions? saint-clair.chabert-liddell@inrae.fr
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Partition of networks

All the networks in the collection may not have the same structure.

G∗ = arg max
G∈P(M)

∑
g∈G

max
(Qg ,Sg )

BIC − L(Qg ,Sg |Mg )

Need 2M partitions to compute all partitions. Too costly if M large.

Dissimilarity

• colSBMs allow to match Zms

• Compute dissimilarity matrix using MLE of SBM on colSBMs block:

D(m,m′) =
∑

q,r∈Q

max
(
π̂m
q , π̂

m′
q

)
max

(
π̂m
r , π̂

m′
r

)( α̂m
qr

δ̂m
−
α̂m′
qr

δ̂m′

)2

• Use clustering algorithm on D (hierarchical clustering, k-medoids. . . )

• Compute BIC -LcolSBM on obtained partition



Application to a Collection of
Advice Networks



Application to advice networks (1)

• 4 advice networks 3

• (126, 104, 71, 153) individuals in (5, 4, 6, 6) SBM Blocks.
• Density: (.061, .049, .18, .053)

3Courtesy of E. Lazega



Application to advice networks (2)

• Modeling 4 networks with δπcolSBM
• ICL

δπcolSBM ≈ −11147 > −11209 ≈ ICLSBM
• No good common structure for the other models

δ̂ = (1, 0.7, 0.45, .79)



Application to advice networks (3)

• δπcolSBM difficult to analyze

• Other colSBMs: structure of network with judges is different

• Best partition for πcolSBM: Priests-Researchers, Lawyers, Judges
(ICL

πcolSBM ≈ −11177)



Predicting missing advices

Better prediction of advices between researchers with advice networks?

• Encoding proportion K of entries as NA

• Fit δcolSBMs (using Poisson model for inference purpose)

• Using information from different set of networks with δcolSBM

•
p̂res
ij =

∑
q,r∈Q̂res

P̂R(Z res
iq = 1)P̂R(Z res

jr = 1)δ̂res α̂qr

• ROC AUC to judge quality of prediction



Predicting missing advices

Better prediction of advices between researchers with advice networks?

• Baseline is black dot (researchers on their own)

• Researchers, Lawyers information very insightful when K small

• Judges always bad except for large K

0.5

0.6

0.7

0.8

0.25 0.50 0.75
K

R
O

C
 A

U
C

Model

Res

ResJud

ResJudLaw

ResLaw

ResPri

ResPriJud

ResPriJudLaw

ResPriLaw


	Stochastic Block Model
	Modeling a Collection of Networks
	Inference, Model Selection and Partition of Networks
	Applications to food webs
	Appendix
	References
	Application to a Collection of Advice Networks


