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Single-cell multi-modal  joint Dimensionality Reduction (jDR)
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Single-cell multi-modal  joint Dimensionality Reduction (jDR)
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Paired data: Multiome, CITE-seq

Unpaired data: scATAC, scRNA
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APPLICATION TO BIOLOGY

Cell states and types identification
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Single-cell multi-omics multi-layer networks
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APPLICATION TO BIOLOGY

Underlying molecular mechanisms
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BENCHMARKING 

SINGLE-CELL NETWORK 

INFERENCE ALGORITHMS

Kang Y, Thieffry D, Cantini L. Frontiers in genetics. 2021.

M2 internship Yoonjee Kang
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The cell’s phenotypic behavior depends on a variety of biological  

macromolecules interacting at different layers of regulation

COSTANZO, Michael, et al. Science, 2016, 353.6306: aaf1420.

NETWORKS DISENTANGLE BIOLOGICAL COMPLEXITY
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Networks used to model interactions between biological 

macromolecules (genes, proteins).

NETWORKS IN BIOLOGY
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Networks used to model interactions between biological 

macromolecules (genes, proteins).

NETWORKS IN BIOLOGY

Networks derived 
from experiments
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Networks used to model interactions between biological 

macromolecules (genes, proteins).

NETWORKS IN BIOLOGY

Networks inferred 
from data
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THE ADVENT OF SCRNA-SEQ
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THE ADVENT OF SCRNA-SEQ
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PROMISES AND CHALLENGES OF SCRNA-SEQ IN NETWORK INFERENCE

18

• Cell type/state regulatory 

programs

• Easy access to many 

observations

• Dealing with specificities of 

scRNA-seq

Cell cluster A

Cell cluster B

Cell cluster C

Todorov H et al. 

Methods Mol Biol. 

2019;1883:235-249



EXISTING METHODS FOR NETWORK INFERENCE IN SCRNA-SEQ
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Cell cluster A

Cell cluster B

Cell cluster C

Todorov H et al. 

Methods Mol Biol. 

2019;1883:235-249

Existing methods are based on:

• Use/not use pseudotime

• Adapted/ not adapted from bulk 

data

• Random forests (GENIE3, GRNBoost)

• Information theory (PIDC)

• Correlation (PPCOR, GeneNet)

• ODEs (GRISLIE, SCODE)
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• One data simulation strategy plus two real data

• In real data ground-truth: STRING

• Few genes considered 10-100

BENCHMARKING NETWORK INFERENCE

Chen, S., et al. BMC Bioinformatics 19, 232 (2018).
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BENCHMARKING NETWORK INFERENCE
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• Two data 

simulation 
strategies plus real 

data

• In real data 

ground-truth: 
STRING or ChiP-

seq

• Few genes 

considered 100-
2000

Pratapa A, et al. Nat Methods. 2020;17(2):147-154. 



POOR PERFORMANCES IN SIMULATED DATA

23Pratapa A, et al. Nat Methods. 2020;17(2):147-154. 

BoolODE simulated data Curated models data
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PERFORMANCES ON REAL DATA ARE DIFFICULT TO EVALUATE

Pratapa A, et al. Nat Methods. 2020;17(2):147-154. 



AIM: BENCHMARKING 

ON REAL SCRNA DATA 

WITH MANY GENES
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BENCHMARKING NETWORK INFERENCE REPRODUCIBILITY

Using the reproducibility between biological replicates to evaluate the 

quality of network inference methods in real scRNA-seq data
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Retina dataset 1

Retina dataset 2
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BENCHMARKING NETWORK INFERENCE REPRODUCIBILITY
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Retina dataset 1

Retina dataset 2

NETWORK INFERENCE:

GENIE3, GRNBoost2, 

PPCOR, CLR, GeneNet, 

PIDC

Using the reproducibility between biological replicates to evaluate the 

quality of network inference methods in real scRNA-seq data



BENCHMARKING NETWORK INFERENCE REPRODUCIBILITY
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Retina dataset 1

Retina dataset 2

Using the reproducibility between biological replicates to evaluate the 

quality of network inference methods in real scRNA-seq data

Data considered: 

retina, colorectal cancer, 

hematopoiesis (HSC, CLP, 

Erythrocytes, Monocytes, 

Dendritic cells)

NETWORK INFERENCE:

GENIE3, GRNBoost2, 

PPCOR, CLR, GeneNet, 

PIDC



GENIE3 AND GRNBOOST2 PROVED BEST PERFORMANCES IN RETINA

Reproducibility scores

Percentage of 
link overlap
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GENIE3 AND GRNBOOST2 PROVED BEST PERFORMANCES IN RETINA

Intersection with known interactions

Percentage of 
link overlap

ENCODE Roadmap 

epigenome

32



33

Percentage of 
link overlap

ENCODE Roadmap 
epigenome

Colorectal cancer (CRC)

GENIE3 AND GRNBOOST2 PROVED BEST PERFORMANCES IN CRC



GENIE3 PROVED BEST PERFORMANCES IN HEMATOPOIESIS
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Hematopoiesis reproducibility score

Hematopoiesis intersection score

Percentage of 
link overlap

ENCODE Roadmap 
epigenome

Colorectal cancer (CRC)



THE LINK THRESHOLD DOES NOT AFFECT REPRODUCIBILITY
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• Previous results obtained for k=100,000

• Changing threshold does not alter 

much results

• GRNBoost performs better at 1000/100 

links, but low density network 

Erythrocytes

HSCs Dendritic cells



CELLS AND SEQUENCING PLATFORM DO NOT AFFECT RESULTS
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To test impact of sequencing platform and number of cells, we subset the 

retina dataset
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To test impact of sequencing platform and number of cells, we subset the 

retina dataset



CELLS AND SEQUENCING PLATFORM DO NOT AFFECT RESULTS
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To test impact of sequencing platform and number of cells, we subset the 

retina dataset



SCNET JUPYTER NOTEBOOK TO REPRODUCE RESULTS
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CONCLUSIONS

40

• Benchmarking of scRNA-seq networks inference based on 

reproducibility

• GENIE3 shows better performances

• Our results agree with previous benchmarks

Pay attention!

• Combining benchmarks is fundamental

• Methods based on pseudotime are missing
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PERSPECTIVES: SINGLE-CELL MULTI-LAYER GRAPHS
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Combining multi-modal data to improve quality of single-cell graphs

Proteome
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Transcriptome

Multi-layer graph

Ina Maria 

Deutschmann

Remi 

Trimbour



PERSPECTIVES: SINGLE-CELL MULTI-LAYER GRAPHS
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Combining multi-modal data to improve quality of single-cell graphs

Currently used approach: 
transcriptome alone

Comparison

Proteome

Epigenome

Transcriptome

Multi-layer graph
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Associated publication: Kang Y, Thieffry D, Cantini L. Frontiers in genetics. 2021

https://github.com/ComputationalSystemsBiology/scNET

https://github.com/ComputationalSystemsBiology/scNET


EXISTING METHODS SHOW POOR PERFORMANCES

45Stone M. et al. biorxiv 2021


