EVALUATING THE REPRODUCIBILITY OF SINGLE-CELL NETWORK INFERENCE ALGORITHMS

LAURA CANTINI

CNRS Researcher Computational Systems biology Lab Institut de Biologie de l'ENS Paris, France

PaRis Artificial Intelligence Research InstitutE

CNRS researcher in IBENS-ENS and chair PRAIRIE

CNRS researcher in IBENS-ENS and chair PRAIRIE

METHODS FOR SINGLE-CELL MULTI-MODAL DATA INTEGRATION

CNRS researcher in IBENS-ENS and chair PRAIRIE

METHODS FOR SINGLE-CELL MULTI-MODAL DATA INTEGRATION

CNRS researcher in IBENS-ENS and chair PRAIRIE

METHODS FOR SINGLE-CELL MULTI-MODAL DATA INTEGRATION

PaRis Artificial Intelligence Research InstitutE

APPLICATION TO BIOLOGY

Cell states and types identification

8

M2 internship Yoonjee Kang

BENCHMARKING SINGLE-CELL NETWORK INFERENCE ALGORITHMS

Kang Y, Thieffry D, Cantini L. Frontiers in genetics. 2021.

NETWORKS DISENTANGLE BIOLOGICAL COMPLEXITY

The cell's phenotypic behavior depends on a variety of biological macromolecules interacting at different layers of regulation

NETWORKS IN BIOLOGY

Networks used to model interactions between biological macromolecules (genes, proteins).

NETWORKS IN BIOLOGY

Networks used to model interactions between biological macromolecules (genes, proteins).

Networks derived from experiments

NETWORKS IN BIOLOGY

Networks used to model interactions between biological macromolecules (genes, proteins).

THE ADVENT OF SCRNA-SEQ

.

THE ADVENT OF SCRNA-SEQ

. .

PROMISES AND CHALLENGES OF SCRNA-SEQ IN NETWORK INFERENCE

- Cell type/state regulatory
 programs
- Easy access to many observations
- Dealing with specificities of scRNA-seq

EXISTING METHODS FOR NETWORK INFERENCE IN SCRNA-SEQ

Existing methods are based on:

- Use/not use pseudotime
- Adapted/ not adapted from bulk data
- Random forests (GENIE3, GRNBoost)
- Information theory (PIDC)
- Correlation (PPCOR, GeneNet)
- ODEs (GRISLIE, SCODE)

BENCHMARKING NETWORK INFERENCE

- One data simulation strategy plus two real data
- In real data ground-truth: STRING
- Few genes considered 10-100

BENCHMARKING NETWORK INFERENCE

- One data simulation strategy plus two real data
- In real data ground-truth: STRING
- Few genes considered 10-100

BENCHMARKING NETWORK INFERENCE

- Two data simulation strategies plus real data
- In real data ground-truth: STRING or ChiPseq
- Simulated data from synthetic networks write wr
- Few genes considered 100-2000

POOR PERFORMANCES IN SIMULATED DATA

Pratapa A, et al. Nat Methods. 2020;17(2):147-154.

PERFORMANCES ON REAL DATA ARE DIFFICULT TO EVALUATE

		TFs + 500 genes						TFs + 1000 genes											
		Network Statistic			s EPR				Network Statistics			EPR							
		#TFS	#Gene	Densit	PIDC	GENI	GRNB	CODE	COR	SINC	#TFS	#Gen	Densit	NPIDC	GEN	GRN	300	PCORSING	c
	mHSC-E	156	300	0.03	7.5				1.6		161	427	0.03	8.1			4.2		
	mHSC-L	39	74	0.05		6.8		2.1			40	86	0.05		7.2	7.2		1.4	
STRING mHSC-GM 92 206 0.04 8.7 mESC 495 648 0.02 2.0 mDC 264 487 0.04 2.0	mHSC-GM	92	206	0.04		8.7			1.9	4	100	357	0.04		8.5		1.2	1.2	
	3.3			1.6	499	799	0.02	3.7		3.7		1.1	Ī						
	mDC	264	487	0.04		2.0				1.0	273	681	0.03		2.2			1.0	
1	mHSC-E	144	447	0.02	5.4				1.6		147	680	0.02	5.7			3.1		
	mHSC-L	35	168	0.05	2.9			_	1.2		37	198	0.04	3.0	3.0	3.0	1.4		
Non-specific ChIP-Sea	mHSC-GM	82	301	0.03		6.8				1.3	88	532	0.03		5.9			1.1	
Chir-Seq	mESC	516	896	0.01		3.3				1.7	522	1221	0.01		3.5	3.5	F	1.2	
	mDC	250	643	0.02	2.7	2.7				1.6	254	980	0.02		3.0			1.2	
Cell-type specific ChIP-Seq	mHSC-E	29	691	0.58			1.0		1.1		33	1177	0.57		1.0	1.0	1.0		
	mHSC-L	16	525	0.52		1.1	1.0	1.1	1.1		16	640	0.51		1.1	1.0	1.1		
	mHSC-GM	22	618	0.54		1.1	1.0				23	1089	0.56		1.0	1.0	1.0	1.0	
	mESC	88	977	0.34	1.0	1.1	1.1			1.1	89	1385	0.35		1.1	1.1		1.0	
	mDC	20	448	0.08		1.0				1.3	21	690	0.08					1.0 1.3	5)

Pratapa A, et al. Nat Methods. 2020;17(2):147-154.

AIM: BENCHMARKING ON REAL SCRNA DATA WITH MANY GENES

I	Independent scRNA-sec datasets						
Retina dataset	- 1						
Retina datase	† 2						

GENIE3 AND GRNBOOST2 PROVED BEST PERFORMANCES IN RETINA

GENIE3 AND GRNBOOST2 PROVED BEST PERFORMANCES IN RETINA

GENIE3 AND GRNBOOST2 PROVED BEST PERFORMANCES IN CRC

Colorectal cancer (CRC)

.

.

GENIE3 PROVED BEST PERFORMANCES IN HEMATOPOIESIS

.

Hematopoiesis intersection score

.

THE LINK THRESHOLD DOES NOT AFFECT REPRODUCIBILITY

- Previous results obtained for k=100,000
- Changing threshold does not alter much results
- GRNBoost performs better at 1000/100 links, but low density network

CELLS AND SEQUENCING PLATFORM DO NOT AFFECT RESULTS

To test impact of sequencing platform and number of cells, we subset the retina dataset

CELLS AND SEQUENCING PLATFORM DO NOT AFFECT RESULTS

To test impact of sequencing platform and number of cells, we subset the retina dataset

CELLS AND SEQUENCING PLATFORM DO NOT AFFECT RESULTS

To test impact of sequencing platform and number of cells, we subset the retina dataset

SCNET JUPYTER NOTEBOOK TO REPRODUCE RESULTS

Compu	ationalSystemsBiology / scNET Public			
<> Code	⊙ Issues 2 13 Pull requests 1 ⊙ Action	ons 🔟 Projects 🖽 Wiki 🛈 Security	🗠 Insights 🔯	Settings
	양 master - 양1 branch ⊙0 tags		Go to file Add file	- Code -
	ykang-m updated scNET environmen	t	3b23007 on Sep 15	18 commits
	Algorithm_Comparison.ipynb	notebook edited for additional algorithms		3 months ago
	Functions.R	Updated for CLR and GeneNet comparison		3 months ago
	README.md	Update alg notebook		11 months ago
	🗅 scNET.yml	updated scNET environment		3 months ago

E README.md

0

Evaluating the reproducibility of single-cell gene regulatory network inference algorithms

We here benchamrk three single-cell network inference algorithms based on their reproducibility, i.e. their ability to infer similar networks once applied to two independent datasets from the same biological condition.

The benchmarked methods are:

CONCLUSIONS

- Benchmarking of scRNA-seq networks inference based on reproducibility
- GENIE3 shows better performances
- Our results agree with previous benchmarks

CONCLUSIONS

- Benchmarking of scRNA-seq networks inference based on reproducibility
- GENIE3 shows better performances
- Our results agree with previous benchmarks

Pay attention!

- Combining benchmarks is fundamental
- Methods based on pseudotime are missing

PERSPECTIVES: SINGLE-CELL MULTI-LAYER GRAPHS

Combining multi-modal data to improve quality of single-cell graphs

PERSPECTIVES: SINGLE-CELL MULTI-LAYER GRAPHS

Combining multi-modal data to improve quality of single-cell graphs

ACKNOWLEDGEMENTS

CSB Team

Associated publication: Kang Y, Thieffry D, **Cantini L.** Frontiers in genetics. 2021 <u>https://github.com/ComputationalSystemsBiology/scNET</u>

Samaran, Remi Trimbour

EXISTING METHODS SHOW POOR PERFORMANCES

