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Problem

Introduction

Network analysis. Two distinct statistical problems

> Network inference: species/genes interactions are not observed but reconstructed based on
abundance/expression data
— graphical lasso, tree-based inference, GeneNet, ...

» Network topology: the interaction network is observed and one aim at understanding its
organization
— edge beetweenness, stochastic block model (SBM), ...
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Introduction

Network analysis. Two distinct statistical problems

> Network inference: species/genes interactions are not observed but reconstructed based on
abundance/expression data
— graphical lasso, tree-based inference, GeneNet, ...

» Network topology: the interaction network is observed and one aim at understanding its
organization
— edge beetweenness, stochastic block model (SBM), ...

A common situation: Try to understand the organization of the underlying network based on
abundance/expression data, i.e. data collected on the nodes only

'Pipeline’ approach:
1. Infer the network G based on the available data

2. Analyse G as any observed network
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A 'pipeline’

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)
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A 'pipeline’
Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

Abundances Y: nXx p Inferred network G: pXp ‘ SBM analysis:

Me.ae Ra.ra Mi.po Ar.at

108 0 325 0
110 0 349 0
788 0 6 0
295 0 2 0

13 2 240 0
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A 'pipeline’

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

Abundances Y: nXx p

Me.ae Ra.ra Mi.po Ar.at

108 0 325 0

110 0 349 0

788 0 6 0

205 0 2 0

13 2 240 0
Problem:

Problem

Inferred network G: pXp

SBM analysis:

» The uncertainty of network inference (step 1)

> is not accounted for in the topological analysis (step 2)

S. Robin

Topological analysis of an inferred network

NetBio'19 3/20



Problem

Bridging the gap

Two different definitions of 'network’.

Network inference: the species abundances (or gene expressions) are mutually dependent and the
network to be inferred is the graphical model that encodes theses (conditional)
dependences (e.g. GGM)

Network topology: the observed network (i.e. the set of observed interactions between the species
or genes) is supposed to arise from some random graph model (e.g SBM)
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Problem

Bridging the gap

Two different definitions of 'network’.

Network inference: the species abundances (or gene expressions) are mutually dependent and the
network to be inferred is the graphical model that encodes theses (conditional)
dependences (e.g. GGM)

Network topology: the observed network (i.e. the set of observed interactions between the species

or genes) is supposed to arise from some random graph model (e.g SBM)

Here,
» The graphical model G itself is supposed to arise from some random graph model

» The observed data are supposed to arise from some joint distribution that is faithful to G
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Problem

Topological analysis of an inferred network

Rational.
> The observed data are distributed according to some (undirected) graphical model (GM) G
» The GM G itself arise from som random graph model, e.g. G ~ SBM
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Problem

Topological analysis of an inferred network

Rational.
> The observed data are distributed according to some (undirected) graphical model (GM) G
» The GM G itself arise from som random graph model, e.g. G ~ SBM

Aim.
» Based on the observed data, say something about the process that produced G

> Case of SBM: say something about the node memberships

Versatile approach.
> Be as agnostic as possible about the network inference method

P Just assume that the method provides a score for each edge
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Problem

Edge scores

Graphical lasso [FHT08]. For Gaussian graphical models, Q = ¥ 1 = precision matrix

sparsity assumption: ﬁ(k) = arg mgxlog p(Y;Q) — A|9]l1,0
inferred network: G(\) = support (ﬁ(A))
[#21] edge score: Sjk = max {)\ t(U,k) € 6(/\)}
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Tree-based approaches [MJ06,Kir07,SRS19,MRA19]. Random tree-shaped GM T
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S. Robin Topological analysis of an inferred network NetBio'19 6/20



Problem

Edge scores

Graphical lasso [FHT08]. For Gaussian graphical models, Q = ¥ 1 = precision matrix

sparsity assumption: ﬁ(k) = arg mgxlog p(Y;Q) — A|9]l1,0
inferred network: G(\) = support (ﬁ(A))
[#21] edge score: Sjk = max {)\ t(U,k) € 6(/\)}

Tree-based approaches [MJ06,Kir07,SRS19,MRA19]. Random tree-shaped GM T

Sik=P{U,k) e T|Y}

Assumption 1 (fairly reasonable). The distribution of the scores of present edges is different from
the distribution of the scores of absent edges
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Problem

Edge scores: synthetic data

M-B glasso EM-tree
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» Any reasonable method provides differentially distributed scores
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A pictural view
Conceptual (generative) model:

Model & Inference

Node membership Z
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A pictural view
Pipe-line:
Node membership Z Graphical model G
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A pictural view
Actual pipe-line:

Model & Inference

Node membership Z

Graphical model G
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A pictural view

Model & Inference

Our aim:
Node membership Z Graphical model G
Y
o o
Edge scores S Observed data Y
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Model & Inference

A reminder on (binary) SBM

A mixture model for random graphs. [NSO1]
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Model & Inference

A reminder on (binary) SBM

A mixture model for random graphs. [NSO01]

o o
Consider p nodes (j = 1..p); °
Z; = unobserved label (color)of node i: PY Y
g = P(Z = q) ® °
o

m = (m1,..7Q);
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Model & Inference

A reminder on (binary) SBM

A mixture model for random graphs. [NSO01]

Consider p nodes (j = 1..p);
Z; = unobserved label (color)of node i:

mq = P(Zj=q)

m = (71,..7Q);
Edge Gjx depends on the labels:

P(G=11Z=q,Zk =4) =
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Model & Inference

A reminder on (binary) SBM

A mixture model for random graphs. [NSO01]
Consider p nodes (j = 1..p);

Z; = unobserved label (color)of node i: Py PY

mq = P(Zj = q) \

T = (m1,..7Q);
Edge Gjx depends on the labels:

P(G=11Z=q,Zk =4) =
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Model & Inference

A special instance of SBM

Model. j,k =1,...p nodes = species = genes, Q clusters

1. Node membership Z;: each node belongs to cluster g with probability 7
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Model & Inference

A special instance of SBM

Model. j,k =1,...p nodes = species = genes, Q clusters

1. Node membership Z;: each node belongs to cluster g with probability 7
2. Network / GM G: P{(j,k) € G| Zj =q,Zx =L} =Yg

G~ SBMbinary(pa ™, ’Y)
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A special instance of SBM

Model. j,k =1,...p nodes = species = genes, Q clusters

1. Node membership Z;: each node belongs to cluster g with probability 7
2. Network / GM G: P{(j,k) € G| Zj =q,Zx =L} =Yg

G~ SBMbinary(pa ™, 7)

3. Observed data: {Y;}j—1, .., iid ~ GMg (eg. Vi~ GGM(QEI))

4. Network inference: score matrix S = [Sj] = some_network_inference_algorithm(Y’)

(Sik | Gjx =0) ~ Fo, (Sl Gx=1)~F

Assumption 2 (more questionable). The scores (Sj) are independent conditionally on the edge’s
existence (Gjy).
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Model & Inference

A special instance of SBM

Model. j,k =1,...p nodes = species = genes, Q clusters

1. Node membership Z;: each node belongs to cluster g with probability 7
2. Network / GM G: P{(j,k) € G| Zj =q,Zx =L} =Yg

G~ SBMbinary(pa ™, 7)

3. Observed data: {Y;}j—1, .., iid ~ GMg (eg. Vi~ GGM(QEI))

4. Network inference: score matrix S = [Sj] = some_network_inference_algorithm(Y’)

(Sik | Gjx =0) ~ Fo, (Sl Gx=1)~F

Assumption 2 (more questionable). The scores (Sj) are independent conditionally on the edge’s
existence (Gjy).

A mixture distribution for the edge scores:

(Sik | Zy =q,Zk =£) ~ (1 = vqe)Fo + vqe F1
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Model & Inference

Inference

Aim. Infer the parameter 6 = (m,, Fo, F1), the node memberships Z = (Z;) and the graph
G = (Gj).
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Model & Inference

Inference

Aim. Infer the parameter 6 = (m,, Fo, F1), the node memberships Z = (Z;) and the graph
G = (Gj).

Incomplete data model.
» Neither the node memberships Z nor the underlying graph G are observed.
»> The EM algorithm requires to evaluate the conditional distribution pg(Z, G | S).
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Model & Inference

Inference

Aim. Infer the parameter 6 = (m,, Fo, F1), the node memberships Z = (Z;) and the graph
G = (Gj).

Incomplete data model.
» Neither the node memberships Z nor the underlying graph G are observed.
»> The EM algorithm requires to evaluate the conditional distribution pg(Z, G | S).

Variational EM (VEM).
> Maximize a lower bound of the log-likelihood log pg(S)
> Using an approximation of the conditional distribution pg(Z, G | S):

B(Z,6) = p(Z) x B(G | 2)

where p(Z) = H p(Z)) mean field approximation
J

p(G|Z)=p(G|Z,S) exact form
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Model & Inference

Some comments

1. When interested in deciphering a cluster structure among species or genes, there is no need
to actually infer the network (avoid a delicate thresholding step)

2. The observed data Y do not appear in the model: the information it summarized in the
score matrix S

3. The VEM algorithm provides both
> the classification probabilities 5{21 = q} for each node,
> as a by-product: the probability for each edge to be part of the network P{Gj = 1}

4. We use Gaussian distributions for the scores: Fo = N (po,02), F1 = N (p1,0?)

5. Q can be selected using standard (variational) BIC or ICL criteria. ICL can account for the
conditional entropy of Z, or G, or both.

6. Same model as [RRV19], who focus on the control of the rate of false positive edges
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Simulation study

Simulation study

Simulation design.
» K = 3 node clusters: m = (17%, 33%, 50%)
»> SBM node membership Z and graph G: (Z, G) ~ SBM(x,~), ¥ = 1.5log(p)/p
> Gaussian data Y ~ N,(0,Q2.%)
» Sample size n = 20, 50,100
> Edge scores from Meinshausen-Biihimann (M-B), glasso, tree-based algorithms
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Simulation design.
» K = 3 node clusters: m = (17%, 33%, 50%)
»> SBM node membership Z and graph G: (Z, G) ~ SBM(x,~), ¥ = 1.5log(p)/p
> Gaussian data Y ~ N,(0,Q2.%)
» Sample size n = 20, 50,100
> Edge scores from Meinshausen-Biihimann (M-B), glasso, tree-based algorithms

Node classification: ARl = adjusted rand index
p=20 p =30 p =50 p =280
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Simulation study

Simulation study

Simulation design.
» K = 3 node clusters: m = (17%, 33%, 50%)
»> SBM node membership Z and graph G: (Z, G) ~ SBM(x,~), ¥ = 1.5log(p)/p
> Gaussian data Y ~ N,(0,Q2.%)
» Sample size n = 20, 50,100
> Edge scores from Meinshausen-Biihimann (M-B), glasso, tree-based algorithms

Edge recovery: AUC =area under the ROC curve
p=20 p =30 p =50 p =280
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Simulation study

Top = node classification, bottom = edge recovery
p=20 p =30 p =50 p =280
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Scores = M-B, glasso, tree, n = 20,50, 100

P Issue with the choice of the grid of A in M-B and glasso
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lllustrations

Barents fish (1/2)

Dataset: [FNA06]
» n = 89 stations, p = 30 fish species,
» Y = abundance (count) of species j in station i,

> 4 covariates (latitude, longitude, temperature and depth)
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PLNmodels
EMtree

Illustrations

Barents fish (1/2)

Dataset: [FNA06]
» n = 89 stations, p = 30 fish species,
» Y = abundance (count) of species j in station i,

> 4 covariates (latitude, longitude, temperature and depth)

Network inference:
> Fit a Poisson log-normal model [AH89] (PLNmodels package [CMR18])
> Compute edge scores using a tree-based method (EMtree R package [MRA19])
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Illustrations

Barents fish (1/2)

Dataset: [FNA06]
» n = 89 stations, p = 30 fish species,
» Y = abundance (count) of species j in station i,

> 4 covariates (latitude, longitude, temperature and depth)

Network inference:
> Fit a Poisson log-normal model [AH89] (PLNmodels package [CMR18])
> Compute edge scores using a tree-based method (EMtree R package [MRA19])

Choosing the number of clusters: ICL(Z, G) criterion
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PLNmodels
EMtree

Barents fish (2/2)

Choosing @

g =
./.

R ~.

81 =
o/

Parameter estimates.
cluster proportions 7

6.8 19.5 33.2 40.5

cluster connections -y

100 0.2 100 99.2
0.2 85.6 10 27.8
100 10 88.2 16.1
99.2 27.8 16.1 98.3

S. Robin

Illustrations

Species clusters Edge probabilities
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» @ = 4 node clusters are found, incl. one central
cluster

» Low uncertainty for node classification [#22]
> Edge probabilities are highly contrasted

» The network is only drawn for an aesthetic purpose
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Illustrations

Oak mildew (1/2)

Dataset: [JFS'16]

» Metabarcoding of p = 114 microbial and fungal species, including the mildew pathogen E.

alphitoides
» Collected on n = 116 oak leaves
> Y} = read count for species j in leaf i

> 3 covariates (tree status, distances to ground and trunk)
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Illustrations

Oak mildew (1/2)

Dataset: [JFS'16]

» Metabarcoding of p = 114 microbial and fungal species, including the mildew pathogen E.
alphitoides

» Collected on n = 116 oak leaves
> Y} = read count for species j in leaf i

> 3 covariates (tree status, distances to ground and trunk)

Network inference: same procedure as for Barents fish, accounting for differential sampling depth
for fungi and bacteria
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lllustrations

Oak mildew (2/2)

Species correlations Species clusters
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: & °
S @ & O ®

0% e 0% @0 o ON
e o ¥

@ @ ©e d
© o o0 ..@n& @
o 9 % % &°

’ [ ] @@@@

o g %@ g

Q = 10 clusters found (max. value)

Low uncertainty for node classification [#22]
Highly contrasted edge probabilities [#22]
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S. Robin Topological analysis of an inferred network

PLNnetwork result

Cluster structure in the correlation matrix (corrected for covariate effects)

Consistent with direct network inference based on PLN/glasso approach [CMR19]

The pathogens E. alphitoides is associated with 2 fungi and 13 bacterias
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Discussion

Discussion

To summarize.

> A formal probabilistic framework to account for network inference uncertainty in network
topology analysis via SBM

» An agnostic approach with respect to the network inference procedure
> A new instance of SBM with mixture emission distribution
> A VEM algorithm with BIC and ICL variational criteria
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Discussion

Discussion

To summarize.

> A formal probabilistic framework to account for network inference uncertainty in network
topology analysis via SBM

» An agnostic approach with respect to the network inference procedure
> A new instance of SBM with mixture emission distribution
> A VEM algorithm with BIC and ICL variational criteria

Further work.
» How to choose the score (i.e. the network inference method) in practice?

» Non-parametric form for the score distribution [#23]
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Discussion
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Discussion

Lasso: regularization path

Coefficients become null as A increases

01
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» Regularization path: succession of optimal solutions when A\ decreases [#6]
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Discussion

Node membership and edge presence uncertainty
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Discussion

Score distribution

Barents fish. Oak mildew.
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