## Topological analysis of an inferred network

S. Founas, S. Donnet, S. Robin

MIA-Paris, AgroParisTech / INRA / univ. Paris Saclay

NetBio, Oct. 2019, IPS2, Orsay

## Introduction

Network analysis. Two distinct statistical problems

- Network inference: species/genes interactions are not observed but reconstructed based on abundance/expression data
  - $\rightarrow$  graphical lasso, tree-based inference, GeneNet, ...
- Network topology: the interaction network is observed and one aim at understanding its organization
  - $\rightarrow$  edge beetweenness, stochastic block model (SBM), ...

## Introduction

Network analysis. Two distinct statistical problems

- Network inference: species/genes interactions are not observed but reconstructed based on abundance/expression data
  - $\rightarrow$  graphical lasso, tree-based inference, GeneNet, ...
- Network topology: the interaction network is observed and one aim at understanding its organization
  - $\rightarrow$  edge beetweenness, stochastic block model (SBM), ...

A common situation: Try to understand the organization of the underlying network based on abundance/expression data, i.e. data collected on the nodes only

## Introduction

Network analysis. Two distinct statistical problems

- Network inference: species/genes interactions are not observed but reconstructed based on abundance/expression data
  - $\rightarrow$  graphical lasso, tree-based inference, GeneNet, ...
- Network topology: the interaction network is observed and one aim at understanding its organization
  - $\rightarrow$  edge beetweenness, stochastic block model (SBM), ...

A common situation: Try to understand the organization of the underlying network based on abundance/expression data, i.e. data collected on the nodes only

#### 'Pipeline' approach:

- 1. Infer the network  $\widehat{G}$  based on the available data
- 2. Analyse  $\widehat{G}$  as any observed network

## A 'pipeline'

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

## A 'pipeline'

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

Abundances  $Y: n \times p$ 

Inferred network  $\widehat{G}$ :  $p \times p$  SBM analysis:

## A 'pipeline'

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

Abundances  $Y: n \times p$ 

| Me.ae | Ra.ra | Mi.po | Ar.at |
|-------|-------|-------|-------|
| 108   | 0     | 325   | 0     |
| 110   | 0     | 349   | 0     |
| 788   | 0     | 6     | 0     |
| 295   | 0     | 2     | 0     |
| 13    | 2     | 240   | 0     |
|       |       |       |       |
|       |       |       |       |



SBM analysis:

## A 'pipeline'

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

Abundances  $Y: n \times p$ 

| Me.ae | Ra.ra | Mi.po | Ar.at |
|-------|-------|-------|-------|
| 108   | 0     | 325   | 0     |
| 110   | 0     | 349   | 0     |
| 788   | 0     | 6     | 0     |
| 295   | 0     | 2     | 0     |
| 13    | 2     | 240   | 0     |
|       |       |       |       |
|       |       |       |       |





## A 'pipeline'

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

Abundances  $Y: n \times p$ 

| Me.ae | Ra.ra | Mi.po | Ar.at |
|-------|-------|-------|-------|
| 108   | 0     | 325   | 0     |
| 110   | 0     | 349   | 0     |
| 788   | 0     | 6     | 0     |
| 295   | 0     | 2     | 0     |
| 13    | 2     | 240   | 0     |
|       |       |       |       |
| :     |       |       |       |
|       |       |       |       |
|       |       |       |       |





#### Problem:

- The uncertainty of network inference (step 1)
- is not accounted for in the topological analysis (step 2)

## Bridging the gap

Two different definitions of 'network'.

Network inference: the species abundances (or gene expressions) are mutually dependent and the network to be inferred is the graphical model that encodes theses (conditional) dependences (e.g. GGM)

Network topology: the observed network (i.e. the set of observed interactions between the species or genes) is supposed to arise from some random graph model (e.g SBM)

## Bridging the gap

Two different definitions of 'network'.

Network inference: the species abundances (or gene expressions) are mutually dependent and the network to be inferred is the graphical model that encodes theses (conditional) dependences (e.g. GGM)

Network topology: the observed network (i.e. the set of observed interactions between the species or genes) is supposed to arise from some random graph model (e.g SBM)

#### Here,

- ▶ The graphical model G itself is supposed to arise from some random graph model
- $\blacktriangleright$  The observed data are supposed to arise from some joint distribution that is faithful to G

## Topological analysis of an inferred network

Rational.

- $\blacktriangleright$  The observed data are distributed according to some (undirected) graphical model (GM) G
- The GM G itself arise from som random graph model, e.g.  $G \sim SBM$

## Topological analysis of an inferred network

#### Rational.

- $\blacktriangleright$  The observed data are distributed according to some (undirected) graphical model (GM) G
- The GM G itself arise from som random graph model, e.g.  $G \sim SBM$

#### Aim.

- $\blacktriangleright$  Based on the observed data, say something about the process that produced G
- Case of SBM: say something about the node memberships

## Topological analysis of an inferred network

#### Rational.

- $\blacktriangleright$  The observed data are distributed according to some (undirected) graphical model (GM) G
- The GM G itself arise from som random graph model, e.g.  $G \sim SBM$

#### Aim.

- $\blacktriangleright$  Based on the observed data, say something about the process that produced G
- Case of SBM: say something about the node memberships

#### Versatile approach.

- Be as agnostic as possible about the network inference method
- Just assume that the method provides a score for each edge

## Edge scores

Graphical lasso [FHT08]. For Gaussian graphical models,  $\Omega = \Sigma^{-1} =$  precision matrix

sparsity assumption: $\widehat{\Omega}(\lambda) = \arg \max_{\Omega} \log p(Y; \Omega) - \lambda \|\Omega\|_{1,0}$ inferred network: $\widehat{G}(\lambda) = \text{support}\left(\widehat{\Omega}(\lambda)\right)$ [#21] edge score: $S_{jk} = \max\left\{\lambda: (j,k) \in \widehat{G}(\lambda)\right\}$ 

## Edge scores

Graphical lasso [FHT08]. For Gaussian graphical models,  $\Omega = \Sigma^{-1} =$  precision matrix

$$\begin{array}{ll} \text{sparsity assumption:} & \widehat{\Omega}(\lambda) = \arg\max_{\Omega}\log p(Y;\Omega) - \lambda \|\Omega\|_{1,0} \\ & \text{inferred network:} & \widehat{G}(\lambda) = \text{support}\left(\widehat{\Omega}(\lambda)\right) \\ & [\#21] \quad \text{edge score:} & S_{jk} = \max\left\{\lambda : (j,k) \in \widehat{G}(\lambda)\right\} \end{array}$$

Tree-based approaches [MJ06,Kir07,SRS19,MRA19]. Random tree-shaped GM T

$$S_{jk} = P\{(j,k) \in T \mid Y\}$$

## Edge scores

Graphical lasso [FHT08]. For Gaussian graphical models,  $\Omega = \Sigma^{-1} =$  precision matrix

$$\begin{array}{ll} \text{sparsity assumption:} & \widehat{\Omega}(\lambda) = \arg\max_{\Omega}\log p(Y;\Omega) - \lambda \|\Omega\|_{1,0} \\ & \text{inferred network:} & \widehat{G}(\lambda) = \text{support}\left(\widehat{\Omega}(\lambda)\right) \\ & [\#21] \quad \text{edge score:} & S_{jk} = \max\left\{\lambda:(j,k)\in\widehat{G}(\lambda)\right\} \end{array}$$

Tree-based approaches [MJ06,Kir07,SRS19,MRA19]. Random tree-shaped GM T

$$S_{jk} = P\{(j,k) \in T \mid Y\}$$

Assumption 1 (fairly reasonable). The distribution of the scores of present edges is different from the distribution of the scores of absent edges

## Edge scores: synthetic data



Any reasonable method provides differentially distributed scores

## A pictural view Conceptual (generative) model:







|     |     |     |      | 5    |      |
|-----|-----|-----|------|------|------|
|     | sp1 | sp2 | sp3  | sp4  | sp5  |
| sp1 | -   | 1.5 | 0.2  | 17.7 | 0.1  |
| sp3 |     | -   | 26.9 | 8.9  | 1.4  |
| sp3 |     |     | -    | 1.3  | 5.2  |
| sp4 |     |     |      | -    | 10.6 |
| sp5 |     |     |      |      | -    |
| -   |     |     |      |      |      |
| •   |     |     |      |      |      |

|       | Observed data Y |     |     |     |     |  |  |  |
|-------|-----------------|-----|-----|-----|-----|--|--|--|
|       | sp1             | sp2 | sp3 | sp4 | sp5 |  |  |  |
| site1 | 0               | 2   | 8   | 2   | 0   |  |  |  |
| site2 | 3               | 0   | 9   | 0   | 1   |  |  |  |
| site3 | 1               | 5   | 15  | 0   | 3   |  |  |  |
| site4 | 4               | 1   | 16  | 1   | 2   |  |  |  |
| site5 | 1               | 3   | 104 | 0   | 4   |  |  |  |
| site6 | 1               | 0   | 10  | 1   | 3   |  |  |  |
|       |                 |     |     |     |     |  |  |  |
| 1 :   |                 |     |     |     |     |  |  |  |
| · ·   |                 |     |     |     |     |  |  |  |

Model & Inference

## A pictural view Pipe-line:



| Edge scores S |     |     |      |      |      |  |  |  |
|---------------|-----|-----|------|------|------|--|--|--|
|               | sp1 | sp2 | sp3  | sp4  | sp5  |  |  |  |
| sp1           | -   | 1.5 | 0.2  | 17.7 | 0.1  |  |  |  |
| sp3           |     | -   | 26.9 | 8.9  | 1.4  |  |  |  |
| sp3           |     |     | -    | 1.3  | 5.2  |  |  |  |
| sp4           |     |     |      | -    | 10.6 |  |  |  |
| sp5           |     |     |      |      | -    |  |  |  |
|               |     |     |      |      |      |  |  |  |
|               |     |     |      |      |      |  |  |  |
|               |     |     |      |      |      |  |  |  |

|       | Observed data Y |     |     |     |     |  |  |  |
|-------|-----------------|-----|-----|-----|-----|--|--|--|
|       | sp1             | sp2 | sp3 | sp4 | sp5 |  |  |  |
| site1 | 0               | 2   | 8   | 2   | 0   |  |  |  |
| site2 | 3               | 0   | 9   | 0   | 1   |  |  |  |
| site3 | 1               | 5   | 15  | 0   | 3   |  |  |  |
| site4 | 4               | 1   | 16  | 1   | 2   |  |  |  |
| site5 | 1               | 3   | 104 | 0   | 4   |  |  |  |
| site6 | 1               | 0   | 10  | 1   | 3   |  |  |  |
|       |                 |     |     |     |     |  |  |  |
| · ·   |                 |     |     |     |     |  |  |  |
|       |                 |     |     |     |     |  |  |  |

Т

Model & Inference

## A pictural view Actual pipe-line:





7

| Edge scores S |     |     |      |      |      |  |  |
|---------------|-----|-----|------|------|------|--|--|
|               | sp1 | sp2 | sp3  | sp4  | sp5  |  |  |
| sp1           | -   | 1.5 | 0.2  | 17.7 | 0.1  |  |  |
| sp3           |     | -   | 26.9 | 8.9  | 1.4  |  |  |
| sp3           |     |     | -    | 1.3  | 5.2  |  |  |
| sp4           |     |     |      | -    | 10.6 |  |  |
| sp5           |     |     |      |      | -    |  |  |
|               |     |     |      |      |      |  |  |
|               |     |     |      |      |      |  |  |
|               |     |     |      |      |      |  |  |

|       | Observed data Y |     |     |     |     |  |  |  |
|-------|-----------------|-----|-----|-----|-----|--|--|--|
|       | sp1             | sp2 | sp3 | sp4 | sp5 |  |  |  |
| site1 | 0               | 2   | 8   | 2   | 0   |  |  |  |
| site2 | 3               | 0   | 9   | 0   | 1   |  |  |  |
| site3 | 1               | 5   | 15  | 0   | 3   |  |  |  |
| site4 | 4               | 1   | 16  | 1   | 2   |  |  |  |
| site5 | 1               | 3   | 104 | 0   | 4   |  |  |  |
| site6 | 1               | 0   | 10  | 1   | 3   |  |  |  |
|       |                 |     |     |     |     |  |  |  |
|       |                 |     |     |     |     |  |  |  |
|       |                 |     |     |     |     |  |  |  |

Model & Inference

## A pictural view Our aim:





1

|     | Edge scores S |     |      |      |      |  |  |  |  |
|-----|---------------|-----|------|------|------|--|--|--|--|
|     | sp1           | sp2 | sp3  | sp4  | sp5  |  |  |  |  |
| sp1 | -             | 1.5 | 0.2  | 17.7 | 0.1  |  |  |  |  |
| sp3 |               | -   | 26.9 | 8.9  | 1.4  |  |  |  |  |
| sp3 |               |     | -    | 1.3  | 5.2  |  |  |  |  |
| sp4 |               |     |      | -    | 10.6 |  |  |  |  |
| sp5 |               |     |      |      | -    |  |  |  |  |
|     |               |     |      |      |      |  |  |  |  |
|     |               |     |      |      |      |  |  |  |  |
|     |               |     |      |      |      |  |  |  |  |

|       | Observed data Y |     |     |     |     |  |  |
|-------|-----------------|-----|-----|-----|-----|--|--|
|       | sp1             | sp2 | sp3 | sp4 | sp5 |  |  |
| site1 | 0               | 2   | 8   | 2   | 0   |  |  |
| site2 | 3               | 0   | 9   | 0   | 1   |  |  |
| site3 | 1               | 5   | 15  | 0   | 3   |  |  |
| site4 | 4               | 1   | 16  | 1   | 2   |  |  |
| site5 | 1               | 3   | 104 | 0   | 4   |  |  |
| site6 | 1               | 0   | 10  | 1   | 3   |  |  |
|       |                 |     |     |     |     |  |  |
|       |                 |     |     |     |     |  |  |

A mixture model for random graphs. [NS01]

A mixture model for random graphs. [NS01]

Consider *p* nodes (j = 1..p);



A mixture model for random graphs. [NS01]

Consider *p* nodes (j = 1..p);

 $Z_i$  = unobserved label (color) of node *i*:

$$\pi_q = P(Z_j = q)$$

 $\pi = (\pi_1, ... \pi_Q);$ 



A mixture model for random graphs. [NS01]

Consider p nodes (j = 1..p);

 $Z_i$  = unobserved label (color) of node *i*:

$$\pi_q = P(Z_j = q)$$

 $\pi = (\pi_1, ... \pi_Q);$ Edge  $G_{jk}$  depends on the labels:

 $P(G_{jk} = 1 \mid Z_j = q, Z_k = \ell) = \gamma_{q\ell}$ 



A mixture model for random graphs. [NS01]

Consider p nodes (j = 1..p);

 $Z_i$  = unobserved label (color) of node *i*:

$$\pi_q = P(Z_j = q)$$

 $\pi = (\pi_1, ... \pi_Q);$ Edge  $G_{jk}$  depends on the labels:

 $P(G_{jk} = 1 \mid Z_j = q, Z_k = \ell) = \gamma_{q\ell}$ 



Model.  $j, k = 1, \dots p$  nodes = species = genes, Q clusters

1. Node membership  $Z_i$ : each node belongs to cluster q with probability  $\pi_q$ 

Model.  $j, k = 1, \dots p$  nodes = species = genes, Q clusters

- 1. Node membership  $Z_j$ : each node belongs to cluster q with probability  $\pi_q$
- 2. Network / GM G:  $P\{(j,k) \in G \mid Z_j = q, Z_k = \ell\} = \gamma_{q\ell}$

$$G \sim SBM_{\text{binary}}(p, \pi, \gamma)$$

Model.  $j, k = 1, \dots p$  nodes = species = genes, Q clusters

- 1. Node membership  $Z_i$ : each node belongs to cluster q with probability  $\pi_q$
- 2. Network / GM G:  $P\{(j,k) \in G \mid Z_j = q, Z_k = \ell\} = \gamma_{q\ell}$

$$G \sim SBM_{\text{binary}}(p, \pi, \gamma)$$

3. Observed data:  $\{Y_i\}_{i=1,...n}$  iid ~ GM<sub>G</sub> (e.g.  $Y_i \sim GGM(\Omega_G^{-1})$ )

Model.  $j, k = 1, \dots p$  nodes = species = genes, Q clusters

- 1. Node membership  $Z_i$ : each node belongs to cluster q with probability  $\pi_q$
- 2. Network / GM G:  $P\{(j,k) \in G \mid Z_j = q, Z_k = \ell\} = \gamma_{q\ell}$

$$\textit{G} \sim \textit{SBM}_{binary}(\textit{p}, \pi, \gamma)$$

- 3. Observed data:  $\{Y_i\}_{i=1,...n}$  iid ~ GM<sub>G</sub> (e.g.  $Y_i \sim GGM(\Omega_G^{-1})$ )
- 4. Network inference: score matrix  $S = [S_{jk}] = \text{some_network_inference_algorithm}(Y)$

$$(S_{jk} \mid G_{jk} = 0) \sim F_0, \qquad (S_{jk} \mid G_{jk} = 1) \sim F_1$$

Model.  $j, k = 1, \dots p$  nodes = species = genes, Q clusters

- 1. Node membership  $Z_i$ : each node belongs to cluster q with probability  $\pi_q$
- 2. Network / GM G:  $P\{(j,k) \in G \mid Z_j = q, Z_k = \ell\} = \gamma_{q\ell}$

$$\textit{G} \sim \textit{SBM}_{binary}(\textit{p}, \pi, \gamma)$$

- 3. Observed data:  $\{Y_i\}_{i=1,...n}$  iid  $\sim GM_G$  (e.g.  $Y_i \sim GGM(\Omega_G^{-1})$ )
- 4. Network inference: score matrix  $S = [S_{jk}] = \text{some_network_inference_algorithm}(Y)$

$$(S_{jk} \mid G_{jk} = 0) \sim F_0, \qquad (S_{jk} \mid G_{jk} = 1) \sim F_1$$

Assumption 2 (more questionable). The scores  $(S_{jk})$  are independent conditionally on the edge's existence  $(G_{jk})$ .

Model.  $j, k = 1, \dots p$  nodes = species = genes, Q clusters

- 1. Node membership  $Z_i$ : each node belongs to cluster q with probability  $\pi_q$
- 2. Network / GM G:  $P\{(j,k) \in G \mid Z_j = q, Z_k = \ell\} = \gamma_{q\ell}$

$$\textit{G} \sim \textit{SBM}_{binary}(\textit{p}, \pi, \gamma)$$

- 3. Observed data:  $\{Y_i\}_{i=1,...n}$  iid  $\sim GM_G$  (e.g.  $Y_i \sim GGM(\Omega_G^{-1})$ )
- 4. Network inference: score matrix  $S = [S_{jk}] = \text{some_network_inference_algorithm}(Y)$

$$(S_{jk} \mid G_{jk} = 0) \sim F_0, \qquad (S_{jk} \mid G_{jk} = 1) \sim F_1$$

Assumption 2 (more questionable). The scores  $(S_{jk})$  are independent conditionally on the edge's existence  $(G_{jk})$ .

A mixture distribution for the edge scores:

$$(S_{jk} \mid Z_j = q, Z_k = \ell) \sim (1 - \gamma_{q\ell})F_0 + \gamma_{q\ell}F_1$$

Topological analysis of an inferred network

## Inference

Aim. Infer the parameter  $\theta = (\pi, \gamma, F_0, F_1)$ , the node memberships  $Z = (Z_j)$  and the graph  $G = (G_{jk})$ .

## Inference

Aim. Infer the parameter  $\theta = (\pi, \gamma, F_0, F_1)$ , the node memberships  $Z = (Z_j)$  and the graph  $G = (G_{jk})$ .

#### Incomplete data model.

- $\blacktriangleright$  Neither the node memberships Z nor the underlying graph G are observed.
- ▶ The EM algorithm requires to evaluate the conditional distribution  $p_{\theta}(Z, G \mid S)$ .

## Inference

Aim. Infer the parameter  $\theta = (\pi, \gamma, F_0, F_1)$ , the node memberships  $Z = (Z_j)$  and the graph  $G = (G_{jk})$ .

#### Incomplete data model.

- ▶ Neither the node memberships Z nor the underlying graph G are observed.
- ▶ The EM algorithm requires to evaluate the conditional distribution  $p_{\theta}(Z, G \mid S)$ .

#### Variational EM (VEM).

- Maximize a lower bound of the log-likelihood log  $p_{\theta}(S)$
- Using an approximation of the conditional distribution  $p_{\theta}(Z, G \mid S)$ :

 $\widetilde{p}(Z,G) = \widetilde{p}(Z) \times \widetilde{p}(G \mid Z)$ 

 $\widetilde{p}(Z) = \prod_{j} \widetilde{p}(Z_{j})$ 

 $\widetilde{p}(G \mid Z) = p(G \mid Z, S)$ 

where

mean field approximation

## Some comments

- 1. When interested in deciphering a cluster structure among species or genes, there is no need to actually infer the network (avoid a delicate thresholding step)
- 2. The observed data  $\boldsymbol{Y}$  do not appear in the model: the information it summarized in the score matrix  $\boldsymbol{S}$
- 3. The VEM algorithm provides both
  - the classification probabilities  $\widetilde{P}\{Z_j = q\}$  for each node,
  - ▶ as a by-product: the probability for each edge to be part of the network  $\widetilde{P}{G_{jk} = 1}$
- 4. We use Gaussian distributions for the scores:  $F_0 = \mathcal{N}(\mu_0, \sigma_0^2)$ ,  $F_1 = \mathcal{N}(\mu_1, \sigma_1^2)$
- 5. Q can be selected using standard (variational) *BIC* or *ICL* criteria. *ICL* can account for the conditional entropy of Z, or G, or both.
- 6. Same model as [RRV19], who focus on the control of the rate of false positive edges

## Simulation study

#### Simulation design.

- K = 3 node clusters:  $\pi = (17\%, 33\%, 50\%)$
- SBM node membership Z and graph G:  $(Z, G) \sim SBM(\pi, \gamma)$ ,  $\overline{\gamma} = 1.5 \log(p)/p$
- Gaussian data  $Y \sim \mathcal{N}_p(0, \Omega_G^{-1})$
- ▶ Sample size *n* = 20, 50, 100
- Edge scores from Meinshausen-Bühlmann (M-B), glasso, tree-based algorithms

## Simulation study

#### Simulation design.

- K = 3 node clusters:  $\pi = (17\%, 33\%, 50\%)$
- SBM node membership Z and graph G:  $(Z, G) \sim SBM(\pi, \gamma), \overline{\gamma} = 1.5 \log(p)/p$
- Gaussian data  $Y \sim \mathcal{N}_p(0, \Omega_G^{-1})$
- Sample size n = 20, 50, 100
- Edge scores from Meinshausen-Bühlmann (M-B), glasso, tree-based algorithms

# Node classification: ARI = adjusted rand index p = 20 p = 30 p = 50 p = 80p = 50 p = 80

## Simulation study

#### Simulation design.

- K = 3 node clusters:  $\pi = (17\%, 33\%, 50\%)$
- SBM node membership Z and graph G:  $(Z, G) \sim SBM(\pi, \gamma)$ ,  $\overline{\gamma} = 1.5 \log(p)/p$
- Gaussian data  $Y \sim \mathcal{N}_p(0, \Omega_G^{-1})$
- Sample size n = 20, 50, 100
- Edge scores from Meinshausen-Bühlmann (M-B), glasso, tree-based algorithms

# Edge recovery: AUC = area under the ROC curve p = 20 p = 30 p = 50 p = 80p = 10 p = 10



• Issue with the choice of the grid of  $\lambda$  in M-B and glasso

## Barents fish (1/2)

Dataset: [FNA06]

- n = 89 stations, p = 30 fish species,
- $Y_{ij}$  = abundance (count) of species *j* in station *i*,
- 4 covariates (latitude, longitude, temperature and depth)

## Barents fish (1/2)

#### Dataset: [FNA06]

- n = 89 stations, p = 30 fish species,
- $Y_{ij}$  = abundance (count) of species *j* in station *i*,
- 4 covariates (latitude, longitude, temperature and depth)

#### Network inference:

- Fit a Poisson log-normal model [AH89] (PLNmodels package [CMR18])
- Compute edge scores using a tree-based method (EMtree R package [MRA19])

## Barents fish (1/2)

#### Dataset: [FNA06]

- n = 89 stations, p = 30 fish species,
- $Y_{ij}$  = abundance (count) of species *j* in station *i*,
- 4 covariates (latitude, longitude, temperature and depth)

#### Network inference:

- Fit a Poisson log-normal model [AH89] (PLNmodels package [CMR18])
- Compute edge scores using a tree-based method (EMtree R package [MRA19])

Choosing the number of clusters: ICL(Z, G) criterion

## Barents fish (2/2)





#### Parameter estimates.

| cluster proportions $\pi$ |         |                |      |  |  |  |  |
|---------------------------|---------|----------------|------|--|--|--|--|
| 6.8                       | 19.5    | 33.2           | 40.5 |  |  |  |  |
|                           |         |                |      |  |  |  |  |
| cluster                   | connect | tions $\gamma$ |      |  |  |  |  |
| 100                       | 0.2     | 100            | 99.2 |  |  |  |  |
| 0.2                       | 85.6    | 10             | 27.8 |  |  |  |  |
| 100                       | 10      | 88.2           | 16.1 |  |  |  |  |
| 99.2                      | 27.8    | 16.1           | 98.3 |  |  |  |  |
|                           |         |                |      |  |  |  |  |

- Q = 4 node clusters are found, incl. one central cluster
- Low uncertainty for node classification [#22]
- Edge probabilities are highly contrasted
- The network is only drawn for an aesthetic purpose

## Oak mildew (1/2)

#### Dataset: [JFS<sup>+</sup>16]

- Metabarcoding of p = 114 microbial and fungal species, including the mildew pathogen E. alphitoides
- Collected on n = 116 oak leaves
- Y<sub>ij</sub> = read count for species j in leaf i
- 3 covariates (tree status, distances to ground and trunk)

## Oak mildew (1/2)

#### Dataset: [JFS<sup>+</sup>16]

- Metabarcoding of p = 114 microbial and fungal species, including the mildew pathogen *E*. *alphitoides*
- Collected on n = 116 oak leaves
- $Y_{ij}$  = read count for species j in leaf i
- 3 covariates (tree status, distances to ground and trunk)

Network inference: same procedure as for Barents fish, accounting for differential sampling depth for fungi and bacteria

## Oak mildew (2/2)



- Q = 10 clusters found (max. value)
- Cluster structure in the correlation matrix (corrected for covariate effects)
- Consistent with direct network inference based on PLN/glasso approach [CMR19]
- Low uncertainty for node classification [#22]
- Highly contrasted edge probabilities [#22]
- ▶ The pathogens *E. alphitoides* is associated with 2 fungi and 13 bacterias

## Discussion

#### To summarize.

- A formal probabilistic framework to account for network inference uncertainty in network topology analysis via SBM
- ▶ An agnostic approach with respect to the network inference procedure
- A new instance of SBM with mixture emission distribution
- A VEM algorithm with BIC and ICL variational criteria

## Discussion

#### To summarize.

- A formal probabilistic framework to account for network inference uncertainty in network topology analysis via SBM
- ▶ An agnostic approach with respect to the network inference procedure
- A new instance of SBM with mixture emission distribution
- A VEM algorithm with BIC and ICL variational criteria

#### Further work.

- How to choose the score (i.e. the network inference method) in practice?
- ▶ Non-parametric form for the score distribution [#23]

### References I

- Achicon and C.H Ho. The multivariate Poisson-log normal distribution. Biometrika, 76(4):643-653, 1989.
- Griquet, M. Mariadassou, and S. Robin. Variational inference for probabilistic poisson pca. The Annals of Applied Statistics, 12(4):2674–2698, 2018.
- Giudet, M. Mariadassou, and S. Robin. A variational baysian framework for graphical models. In International Conference on Machine Learning, 2019.
- 👎 edman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.
- 🖟 투 pssheim, E. M Nilssen, and M. Aschan. Fish assemblages in the barents sea. Marine Biology Research, 2(4):260–269, 2006.
- kuschkin, V. Fievet, L. Schwaller, T. Fort, C. Robin, and C. Vacher. Deciphering the pathobiome: Intra-and interkingdom interactions involving the pathogen Erysiphe alphitoides. *Microbial ecology*, pages 1–11, 2016.
- rshner. Learning with tree-averaged densities and distributions. In NIPS, pages 761–768, 2007.
- 🖟 📢 eilă and T. Jaakkola. Tractable Bayesian learning of tree belief networks. *Statistics and Computing*, March 2006.
- 🔚 🕅 omal, S. Robin, and A. Ambroise. Tree-based reconstruction of ecological network from abundance data. Technical Report 1905.02452, arXiv, 2019.
- Weight and T.A.B. Snijders. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96(455):1077–1087, 2001.
- Rebafka, E. Roquain, and F. Villers. Graph inference with clustering and false discovery rate control. Technical Report 1907.10176, arXiv, 2019.
- Schwaller, S. Robin, and M. Stumpf. Bayesian Inference of Graphical Model Structures Using Trees. J. Soc. Franc. Stat., 160(2):1–23, 2019.

## Lasso: regularization path

Coefficients become null as  $\lambda$  increases



**•** Regularization path: succession of optimal solutions when  $\lambda$  decreases [#6]

## Node membership and edge presence uncertainty



## Score distribution

Barents fish.



Oak mildew.



[#19]