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Problem

Introduction

Network analysis. Two distinct statistical problems

I Network inference: species/genes interactions are not observed but reconstructed based on
abundance/expression data
→ graphical lasso, tree-based inference, GeneNet, ...

I Network topology: the interaction network is observed and one aim at understanding its
organization
→ edge beetweenness, stochastic block model (SBM), ...

A common situation: Try to understand the organization of the underlying network based on
abundance/expression data, i.e. data collected on the nodes only

’Pipeline’ approach:

1. Infer the network Ĝ based on the available data

2. Analyse Ĝ as any observed network
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Problem

A ’pipeline’

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

Abundances Y : n × p Inferred network Ĝ : p × p SBM analysis:

Me.ae Ra.ra Mi.po Ar.at
108 0 325 0
110 0 349 0
788 0 6 0
295 0 2 0

13 2 240 0
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Problem:

I The uncertainty of network inference (step 1)

I is not accounted for in the topological analysis (step 2)

S. Robin Topological analysis of an inferred network NetBio’19 3 / 20



Problem

A ’pipeline’

Barents fish [FNA06]: n = 89 sites, p = 30 species (+ d = 4 covariates)

Abundances Y : n × p Inferred network Ĝ : p × p SBM analysis:
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Problem

Bridging the gap

Two different definitions of ’network’.

Network inference: the species abundances (or gene expressions) are mutually dependent and the
network to be inferred is the graphical model that encodes theses (conditional)
dependences (e.g. GGM)

Network topology: the observed network (i.e. the set of observed interactions between the species
or genes) is supposed to arise from some random graph model (e.g SBM)

Here,

I The graphical model G itself is supposed to arise from some random graph model

I The observed data are supposed to arise from some joint distribution that is faithful to G
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Problem

Topological analysis of an inferred network

Rational.

I The observed data are distributed according to some (undirected) graphical model (GM) G

I The GM G itself arise from som random graph model, e.g. G ∼ SBM

Aim.

I Based on the observed data, say something about the process that produced G

I Case of SBM: say something about the node memberships

Versatile approach.

I Be as agnostic as possible about the network inference method

I Just assume that the method provides a score for each edge
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Problem

Edge scores

Graphical lasso [FHT08]. For Gaussian graphical models, Ω = Σ−1 = precision matrix

sparsity assumption: Ω̂(λ) = arg max
Ω

log p(Y ; Ω)− λ‖Ω‖1,0

inferred network: Ĝ(λ) = support
(

Ω̂(λ)
)

[#21] edge score: Sjk = max
{
λ : (j , k) ∈ Ĝ(λ)

}

Tree-based approaches [MJ06,Kir07,SRS19,MRA19]. Random tree-shaped GM T

Sjk = P{(j , k) ∈ T | Y }

Assumption 1 (fairly reasonable). The distribution of the scores of present edges is different from
the distribution of the scores of absent edges
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Problem

Edge scores: synthetic data

M-B glasso EM-tree
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I Any reasonable method provides differentially distributed scores
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Model & Inference

A pictural view
Conceptual (generative) model:

Node membership Z

sp1
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sp4 sp5

sp6 sp7

sp8

sp9
sp10

sp11

sp12

sp13

sp14sp15

sp16

sp17

sp18

sp19

sp20

sp21

sp22
sp23

sp24

sp25

sp26

sp27

sp28

sp29

sp30

:

:

Graphical model G

: :

:

:

Edge scores S
sp1 sp2 sp3 sp4 sp5

sp1 - 1.5 0.2 17.7 0.1

sp3 - 26.9 8.9 1.4

sp3 - 1.3 5.2

sp4 - 10.6

sp5 -

.

.

.

:

:

Observed data Y
sp1 sp2 sp3 sp4 sp5

site1 0 2 8 2 0

site2 3 0 9 0 1

site3 1 5 15 0 3

site4 4 1 16 1 2

site5 1 3 104 0 4

site6 1 0 10 1 3

.

.

.
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Model & Inference

A pictural view
Actual pipe-line:
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Model & Inference

A pictural view
Our aim:
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Model & Inference

A reminder on (binary) SBM

A mixture model for random graphs. [NS01]

Consider p nodes (j = 1..p);

Zj = unobserved label (color)of node i :

πq = P(Zj = q)

π = (π1, ...πQ);
Edge Gjk depends on the labels:

P(Gjk = 1 | Zj = q,Zk = `) = γq`
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Model & Inference

A special instance of SBM

Model. j , k = 1, . . . p nodes = species = genes, Q clusters

1. Node membership Zj : each node belongs to cluster q with probability πq

2. Network / GM G : P{(j , k) ∈ G | Zj = q,Zk = `} = γq`

G ∼ SBMbinary(p, π, γ)

3. Observed data: {Yi}i=1,...n iid ∼ GMG (e.g. Yi ∼ GGM(Ω−1
G ))

4. Network inference: score matrix S = [Sjk ] = some network inference algorithm(Y )

(Sjk | Gjk = 0) ∼ F0, (Sjk | Gjk = 1) ∼ F1

Assumption 2 (more questionable). The scores (Sjk ) are independent conditionally on the edge’s
existence (Gjk ).

A mixture distribution for the edge scores:

(Sjk | Zj = q,Zk = `) ∼ (1− γq`)F0 + γq`F1
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Model & Inference

A special instance of SBM

Model. j , k = 1, . . . p nodes = species = genes, Q clusters

1. Node membership Zj : each node belongs to cluster q with probability πq

2. Network / GM G : P{(j , k) ∈ G | Zj = q,Zk = `} = γq`

G ∼ SBMbinary(p, π, γ)
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Model & Inference

Inference

Aim. Infer the parameter θ = (π, γ,F0,F1), the node memberships Z = (Zj ) and the graph
G = (Gjk ).

Incomplete data model.

I Neither the node memberships Z nor the underlying graph G are observed.

I The EM algorithm requires to evaluate the conditional distribution pθ(Z ,G | S).

Variational EM (VEM).

I Maximize a lower bound of the log-likelihood log pθ(S)

I Using an approximation of the conditional distribution pθ(Z ,G | S):

p̃(Z ,G) = p̃(Z)× p̃(G | Z)

where p̃(Z) =
∏
j

p̃(Zj ) mean field approximation

p̃(G | Z) = p(G | Z , S) exact form
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Model & Inference

Some comments

1. When interested in deciphering a cluster structure among species or genes, there is no need
to actually infer the network (avoid a delicate thresholding step)

2. The observed data Y do not appear in the model: the information it summarized in the
score matrix S

3. The VEM algorithm provides both
I the classification probabilities P̃{Zj = q} for each node,
I as a by-product: the probability for each edge to be part of the network P̃{Gjk = 1}

4. We use Gaussian distributions for the scores: F0 = N (µ0, σ
2
0), F1 = N (µ1, σ

2
1)

5. Q can be selected using standard (variational) BIC or ICL criteria. ICL can account for the
conditional entropy of Z , or G , or both.

6. Same model as [RRV19], who focus on the control of the rate of false positive edges
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Simulation study

Simulation study

Simulation design.

I K = 3 node clusters: π = (17%, 33%, 50%)

I SBM node membership Z and graph G : (Z ,G) ∼ SBM(π, γ), γ = 1.5 log(p)/p

I Gaussian data Y ∼ Np(0,Ω−1
G )

I Sample size n = 20, 50, 100

I Edge scores from Meinshausen-Bühlmann (M-B), glasso, tree-based algorithms
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I Gaussian data Y ∼ Np(0,Ω−1
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Node classification: ARI = adjusted rand index
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Simulation study

Simulation design.

I K = 3 node clusters: π = (17%, 33%, 50%)

I SBM node membership Z and graph G : (Z ,G) ∼ SBM(π, γ), γ = 1.5 log(p)/p

I Gaussian data Y ∼ Np(0,Ω−1
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I Sample size n = 20, 50, 100
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Edge recovery: AUC =area under the ROC curve
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Simulation study

Top = node classification, bottom = edge recovery
p = 20 p = 30 p = 50 p = 80
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Scores = M-B, glasso, tree, n = 20, 50, 100

I Issue with the choice of the grid of λ in M-B and glasso
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Illustrations

Barents fish (1/2)

Dataset: [FNA06]

I n = 89 stations, p = 30 fish species,

I Yij = abundance (count) of species j in station i ,

I 4 covariates (latitude, longitude, temperature and depth)

Network inference:

I Fit a Poisson log-normal model [AH89] (PLNmodels package [CMR18])

I Compute edge scores using a tree-based method (EMtree R package [MRA19])

Choosing the number of clusters: ICL(Z ,G) criterion

S. Robin Topological analysis of an inferred network NetBio’19 15 / 20

PLNmodels
EMtree


Illustrations

Barents fish (1/2)

Dataset: [FNA06]

I n = 89 stations, p = 30 fish species,

I Yij = abundance (count) of species j in station i ,

I 4 covariates (latitude, longitude, temperature and depth)

Network inference:

I Fit a Poisson log-normal model [AH89] (PLNmodels package [CMR18])

I Compute edge scores using a tree-based method (EMtree R package [MRA19])

Choosing the number of clusters: ICL(Z ,G) criterion

S. Robin Topological analysis of an inferred network NetBio’19 15 / 20

PLNmodels
EMtree


Illustrations

Barents fish (1/2)

Dataset: [FNA06]

I n = 89 stations, p = 30 fish species,

I Yij = abundance (count) of species j in station i ,

I 4 covariates (latitude, longitude, temperature and depth)

Network inference:

I Fit a Poisson log-normal model [AH89] (PLNmodels package [CMR18])

I Compute edge scores using a tree-based method (EMtree R package [MRA19])

Choosing the number of clusters: ICL(Z ,G) criterion

S. Robin Topological analysis of an inferred network NetBio’19 15 / 20

PLNmodels
EMtree


Illustrations

Barents fish (2/2)

Choosing Q
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Parameter estimates.
cluster proportions π

6.8 19.5 33.2 40.5

cluster connections γ
100 0.2 100 99.2
0.2 85.6 10 27.8
100 10 88.2 16.1

99.2 27.8 16.1 98.3

I Q = 4 node clusters are found, incl. one central
cluster

I Low uncertainty for node classification [#22]

I Edge probabilities are highly contrasted

I The network is only drawn for an aesthetic purpose
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Illustrations

Oak mildew (1/2)

Dataset: [JFS+16]

I Metabarcoding of p = 114 microbial and fungal species, including the mildew pathogen E.
alphitoides

I Collected on n = 116 oak leaves

I Yij = read count for species j in leaf i

I 3 covariates (tree status, distances to ground and trunk)

Network inference: same procedure as for Barents fish, accounting for differential sampling depth
for fungi and bacteria
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Illustrations

Oak mildew (2/2)

Species correlations
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PLNnetwork result
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I Q = 10 clusters found (max. value)

I Cluster structure in the correlation matrix (corrected for covariate effects)

I Consistent with direct network inference based on PLN/glasso approach [CMR19]

I Low uncertainty for node classification [#22]

I Highly contrasted edge probabilities [#22]

I The pathogens E. alphitoides is associated with 2 fungi and 13 bacterias
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Discussion

Discussion

To summarize.

I A formal probabilistic framework to account for network inference uncertainty in network
topology analysis via SBM

I An agnostic approach with respect to the network inference procedure

I A new instance of SBM with mixture emission distribution

I A VEM algorithm with BIC and ICL variational criteria

Further work.

I How to choose the score (i.e. the network inference method) in practice?

I Non-parametric form for the score distribution [#23]
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Discussion

Lasso: regularization path

Coefficients become null as λ increases
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I Regularization path: succession of optimal solutions when λ decreases [#6]
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Discussion

Node membership and edge presence uncertainty

Barents fish.
Q = 4

[#16]
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Discussion

Score distribution

Barents fish.
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