Inferring mechanistic gene regulatory networks from single cell data: a case study on erythropoiesis.

> Arnaud Bonnaffoux (Vidium) and Olivier Gandrillon (LBMC)

Erythropoiesis: the generation of erythrocytes (red blood cells) from bone marrow-harboured haematopoietic stem cells

Zhang Y. et al. (2018). Trends Cell Biol 28:976-986.

Zhang Y. et al. (2018). Trends Cell Biol 28:976-986.

Our differentiation model: T2EC

Self-renewal

Non genetically modified

Mono-ligneage-commited

Homogeneous cell population

Erythrocytes

Gandrillon et al. (1999). EMBO Journal

Our question: can we get the underlying molecular network controlling the erythroid differentiation sequence?

Clearly NOT a new question...

What is new (and we think is decisive) is that it can now be asked at the relevant level: the cell...

-> go for sc transcriptomics

Why go single cell?

During erythropoiesis, (mean) beta-globin gene expression increases.

m

Averaged upon 10 million cells

Let's assume we are now looking at single cells, and assume some cell-to-cell variation

What is to be expected?

Is this true?

Not really...

Why isn't it true?

Gene expression is a bursty process

Suter et al. (2011). Science 332, pp. 472-474 (2 days movie)

Our proposal (1): describe genes as two-state models (PDMP)

Our proposal (2): couple the PDMPs to generate the network

The data set

Inferring Gene Regulatory Networks from dynamic multi-scale data

GRN INFERENCE FRAMEWORK

GRN INFERENCE FRAMEWORK

- Identification of new therapeutic targets
- **Prediction** of treatment efficiency
- Limitation of side effects
- Personalised Medecine
- Diagnostic
- ...

DYNAMIC:

MULTI-LEVEL :

MULTI-SCALE :

DYNAMIC:

MULTI-LEVEL :

• Causality hides in transient

time

MULTI-SCALE :

DYNAMIC :

• Causality hides in transient

time

MULTI-SCALE :

MULTI-LEVEL :

Promoter/RNA/Protein/Cell

- Multi-level Regulation
- Multi-omic data integration

DYNAMIC :

• Causality hides in transient

time

MULTI-SCALE :

Single-cell VS population

- Cellular heterogeneity
- Inner cell stochasticity > RNA burst

MULTI-LEVEL :

Joint distribution

•

Promoter/RNA/Protein/Cell

- Multi-level Regulation
- Multi-omic data integration

Statistical power > single-Cell Moore's law

GENE REGULATORY NETWORK MODEL

MODELLING AT SINGLE CELL SCALE

SYSTEMS BIOLOGY SOLUTIONS

GRN INTERACTION IS FUNCTIONAL

WASABI

WASABI = WAVES ANALYSIS BASED INFERENCE

WASABI SPLITS & PARALELLIZE GRN INFERENCE PROBLEM

Inference fitting : Distribution distance

Inference fitting : Distribution distance

Inference fitting : Distribution distance

WASABI : IN-SILICO VALIDATION

WASABI : IN-VITRO VALIDATION

42

BIOLOGICAL *IN-VITRO* **MODEL** + **DATA**

Differentiation

Erythrocytes

The output from WASABI (1)

364 candidates

The output from WASABI (2)

DESIGN OF EXPERIMENT

DESIGN OF EXPERIMENT: define a distance between

DESIGN OF EXPERIMENT: project in a 2D space

DESIGN OF EXPERIMENT: plan *in silico* experiment

Knock-outs of specific genes maximize the global distance between the candidate networks

Knock-outs of specific genes maximize the global distance between the candidate networks

DOE APPLICATION ON IN-VITRO 364 GRN CANDIDATES

On going: CRSIPR-Cas9 KO of FNIP-1

GRN INFERENCE FRAMEWORK OVERVIEW

Special thank's

Thibault Espinasse (ICJ) Sandrine Gonin-Giraud (LBMC) Anissa Guillemin (LBMC) Ulysse Herbach (LBMC/ICJ/Dracula) Alice Hugues (LBMC) Patrick Mayeux (Institut Cochin) Angélique Richard (LBMC) Elodie Vallin (LBMC) Souad Zreika (LBMC)

THANKS FOR LISTENING !

CONTACT

06 08 51 15 89 www.vidium-solutions.com a.bonnaffoux@vidium-solutions.com

WASABI 3 STEPS FRAMEWORK

