Latent Block Model for Overdispersed Count Data Application in Microbial Ecology

J. Aubert <julie.aubert@agroparistech.fr>

Journée NetBio **Saclay**

Micro-biote/biome : définitions

Une communauté microbienne (ou microbiote) :

est un ensemble d'organismes issus de populations d'espèces distinctes qui cohabitent sur une même aire géographique à un moment donné et qui constituent un réseau d'interactions (= individus)

Le microbiome :

Le microbiote dans son environnement

Microbiomes d'intérêt :

Le phytobiome (microbiome d'un végétal) et notamment

- ► celui de la rhizosphère (dans le sol, autour du système racinaire)
- \triangleright et de la phyllosphère (sur et sous les feuilles).

Le microbiome du sol

Le microbiome intestinal

Quelques questions d'intérêt

- \triangleright Des questions de diversité : qui est là ? en quelle quantité ?
- \triangleright Comment les communautés microbiennes se forment-elles, évoluent et interagissent-elles ?
- ▶ Quelle est l'influence des communautés microbiennes sur la santé (des plantes, des hommes) ? sur les performances de plante ? sur les fonctions de l'écosystème ?

A typical metagenomic experiment

Amplicon-based sampling. Consider

- \triangleright n different (bacterial, fungal, ...) species / OTU and
- \triangleright m different samples / patients / media / conditions.

NGS provides

- Y_{ij} = number of reads from species *i* in sample *j*
	- \propto abundance of species *i* in sample *j*

Question. Can we exhibit some patterns in the distribution of the species abundances across samples ?

Bi-clustering problem

Rephrased problem : Find

- \triangleright groups of species having similar abundance profile across the samples and
- \triangleright groups of samples histing the different species in similar proportions.

Bi-clustering problem

Rephrased problem : Find

- \triangleright groups of species having similar abundance profile across the samples and
- \triangleright groups of samples histing the different species in similar proportions.

Bi-clustering problem : Simultaneously determine

- \triangleright row clusters and
- \blacktriangleright column clusters
- in a $n \times m$ matrix of counts.

Bi-clustering problem

 y_{ij} = number of sequences from sample *j* assigned to Operational Taxonomic Unit (OTU) i.

Approach

Model-based clustering :

```
\rightarrow LBM = Latent Block-Model
```
(Govaert and Nadif, 2005 ; Brault and Mariadassou, 2015)

Approach

Model-based clustering :

```
\rightarrow LBM = Latent Block-Model
```
(Govaert and Nadif, 2005 ; Brault and Mariadassou, 2015)

Specificities of NGS data :

- \blacktriangleright count data.
- \triangleright over dispersed (wrt Poisson),
- \triangleright with heterogeneous sampling effort (= sequencing depth),
- \triangleright with high variation among the species abundances,
- \blacktriangleright possibly with replicates.

Latent Block Model

Bi-clustering. K species groups, G sample groups

► Z_i = group to which species *i* belongs to $(\in \{1, ... K\})$;

 W_i = group to which sample *j* belongs to (∈ {1, ... *G*}) both latent $=$ hidden $=$ unobserved.

 \rightarrow Incomplete data model

Latent Block Model

Bi-clustering. K species groups, G sample groups

► Z_i = group to which species *i* belongs to (\in {1, ...*K*});

 W_i = group to which sample *j* belongs to (∈ {1, ... *G*}) $both$ latent $=$ hidden $=$ unobserved.

 \rightarrow Incomplete data model

Ex : Poisson LBM.

 (Z_i) iid ∼ π (species prop.) (W_i) iid $~\sim~\rho$ (sample prop.) $(\,Y_{ij})$ indep $\,|(Z_{i});(\,W_{j})\;\;\sim\;\; \mathcal{P}(\lambda_{Z_{i}W_{j}})\,$

Does not accommodate for NGS data specificities.

Over-dispersion

Negative-binomial. Most popular distribution of NGS counts :

$$
Y \sim \mathcal{NB}(\lambda, \phi) \qquad \mathbb{E}(Y) = \lambda, \qquad \mathbb{V}(Y) = \lambda(1 + \phi\lambda) \geq \lambda.
$$

Over-dispersion

Negative-binomial. Most popular distribution of NGS counts :

$$
Y \sim \mathcal{NB}(\lambda, \phi) \qquad \mathbb{E}(Y) = \lambda, \qquad \mathbb{V}(Y) = \lambda(1 + \phi\lambda) \geq \lambda.
$$

Gamma-Poisson representation. Take $a = 1/\phi$ and draw

U ~ Gam(a, a), $Y \perp U$ ~ $\mathcal{P}(\lambda U)$ \Rightarrow Y ~ $N \mathcal{B}(\lambda, \phi)$.

Negative binomial $=$ Poisson with latent Gamma

 \rightarrow Incomplete data model (Y is observed, U is not).

LBM for metagenomic data

Hidden layer :

$$
(Z_i) \text{ iid } \sim \pi \qquad \text{(species prop.)}
$$

\n
$$
(W_j) \text{ iid } \sim \rho \qquad \text{(sample prop.)}
$$

\n
$$
(U_{ij}) \text{ iid } \sim \text{Gam}(a_{Z_iW_j}, a_{Z_iW_j})
$$

LBM for metagenomic data

Hidden layer :

$$
(Z_i) \text{ iid } \sim \pi \qquad \text{(species prop.)}
$$

\n
$$
(W_j) \text{ iid } \sim \rho \qquad \text{(sample prop.)}
$$

\n
$$
(U_{ij}) \text{ iid } \sim \text{Gam}(a_{Z_iW_j}, a_{Z_iW_j})
$$

Observed counts : (interest of model-based approaches)

$$
Y_{ij} | Z, W, U \sim \mathcal{P}(\mu_i \nu_j \alpha_{Z_i W_j} U_{ij})
$$

where

- \blacktriangleright μ_i : mean abundance of species *i*
- \blacktriangleright ν_j : sequencing depth in sample *j* (fixed)
- \triangleright $\alpha_{k\sigma}$: interaction term between group species k and sample group g.

LBM for metagenomic data

Figure – The proposed over-dispersed Poisson LBM presented as a directed graphical model. Legend : observed variables (filled white), latent variables (filled gray), parameters are outside the box.

Inference

Aim : Retrieve

- ► Z_i = species group, or at least $P(i \in k | Y)$;
- W_i = sample group, or at least $P(j \in g | Y)$;

and estimate the interaction parameter $\alpha = (\alpha_{kg})$.

Inference

Aim : Retrieve

- \triangleright Z_i = species group, or at least $P(i \in k|Y)$;
- W_i = sample group, or at least $P(j \in g | Y)$;

and estimate the interaction parameter $\alpha = (\alpha_{kg})$.

Which means (maximum-likelihood approach)

- \triangleright Compute $p(Z, W, U|Y)$;
- **I** Maximize $\log p_{\theta}(Y)$, where $\theta = (\alpha, \mu)$.

Most popular algorithm : EM (Dempster et al., 1977).

Variational approximation

Species group Z_i and sample group W_i are not independent given Y_{ii} \rightarrow $p(Z, W, U | Y)$ intractable

Variational approximation (Jordan, 1999). Find

 $\widetilde{p}(Z, W, U) \simeq p(Z, W, U|Y)$ such that $\widetilde{p}(Z, W, U) = \widetilde{p}_1(Z) \widetilde{p}_2(W) \widetilde{p}_3(U)$

(mean-field approximation).

 \rightarrow Variational EM (VEM) algorithm provide a lower bound

 $J(Y, \widetilde{\rho}, \theta) \leq \log p_{\widehat{\theta}}(Y).$

Penalized 'likelihood' criteria

Penalized criterion. log $p_{\widehat{\theta}}(Y)$ intractable

$$
\log p_{\widehat{\theta}}(Y) - \text{pen}(p_{\widehat{\theta}}) \qquad \rightarrow \qquad J(Y, \widetilde{p}, \widehat{\theta}) - \text{pen}(p_{\widehat{\theta}})
$$

BIC & ICL. $H =$ entropy $pen_{BIC} = [(K - 1)log n - (G - 1)log m - KGlog(nm)]/2$ pen_{ICL} = pen $_{BIC}$ + $\mathcal{H}(\widetilde{p}_Z)$ + $\mathcal{H}(\widetilde{p}_W)$ (classification entropy)

Model comparison

Likelihood ratio for nested models.

 $\mathcal{M}\subset\mathcal{M}'$, the likelihood ratio is defined as

$$
LR(\mathcal{M},\mathcal{M}') = 2 \left[\log p(\mathbf{Y}; \widehat{\theta}_{\mathcal{M}'}) - \log p(\mathbf{Y}; \widehat{\theta}_{\mathcal{M}}) \right].
$$

Interest of block structure.

$$
\mathcal{M}_{\mathsf{min}} := \mathcal{M}_{1,1} \subset \mathcal{M}_{K,G} \subset \mathcal{M}_{\mathsf{max}} := \mathcal{M}_{n,m}
$$

Lower bounds for likelihood ratios.

$$
\text{(a):} \quad LR(\mathcal{M}_{\min}, \mathcal{M}_{K,G}) \geq 2 \left[\mathcal{J}(\mathbf{Y}, \widehat{q}_{K,G}, \widehat{\theta}_{K,G}) - \log p(\mathbf{Y}; \widehat{\theta}_{1,1}) \right],
$$

(b):
$$
LR(M_{K,G}, \mathcal{M}_{\text{max}}) \leq 2 \left[\log p(\mathbf{Y}; \widehat{\theta}_{n,p}) - \mathcal{J}(\mathbf{Y}, \widehat{q}_{K,G}, \widehat{\theta}_{K,G}) \right].
$$

Three 16S or 18S rRNA amplicon-based datasets

- \triangleright MetaRhizo : plants and bacteria communities living in their rhizosphere (collab. C. Mougel, INRA Rennes)
- \triangleright Oak powdery mildew : bacteria and fungi including Erysiphe alphitoides living in the phyllosphere (collab. C. Vacher, INRA Bordeaux)
- \triangleright Macaroni : microbial community assembly in soil (collab. L. Philippot, A. Spor, INRA Dijon)
- Aim : to understand the structure of these relationships

Meta-rhizo

Dataset : Medicago truncatula rhizosphere.

- $n = 288$ bacteria (genus)
- \blacktriangleright $m = 483$ samples $=$ rhizosphere of different plants (genotypes)

The total counts per sample go from 29410 to 33840 number of sequences.

19*.*2% of data are null

Range from 0 to 5084 with a median $= 9$ and mean $= 110$

Results :

- $\widehat{K} = 10$ groups of bacteria
- $\hat{G} = 4$ groups of samples

$$
\bullet \ \hat{a}=7.29
$$

Despite *ν*^j , bacteria groups correspond to abundance groups.

Plant groups corresponds to diversity levels (Shannon index).

J. Aubert 19 / 37

Goodness of fit.

Table – MetaRhizo data. Goodness-of-fit. LR is the likelihood ratio statistic as defined in Section and df stands for difference in terms of free parameters.

Dataset : Pathobiome of the Erysiphe alphitoides (Jakuschkin et al. 2016).

- $n = 114 = E$. alphitoides +47 fungal +66 bacterial otus
- \blacktriangleright $m = 116$ leaves from 3 trees (resistant, intermediate, susceptible)
- \blacktriangleright 34% of data are null
- **•** Range from 0 to 2228 (median $= 2$; mean $= 24.17$)

$$
\rightarrow 2\nu_j = (\nu_j^{\text{back}}, \nu_j^{\text{fung}})
$$

Results :

\n- Common
$$
a : (\widehat{K} = 1, \widehat{G} = 1)
$$
\n- $a_{kg} : (\widehat{K} = 5, \widehat{G} = 3)$
\n

0 2 4 6 0.0 0.5 1.0 1.5 2.0 akg

*α*kg ∈ [0*.*22; 2*.*14] (ratio from 1 to 9*.*6).

Comments :

- Heterogeneous over-dispersion parameters (a_{kg}) ,
- Groups reveal the abundance of E . alphitoides (pathogene)

MicrobiAl Community Assembly Rules and functiONIng

Aim : Identify biotic interactions between microbial groups using a targeted subtractive approach by removal and enrichment of specific microbial groups

Data : After filtering steps, 353 OTUs and 347 biological samples (10 treatments)

 \blacktriangleright 54% of data are null, Mean = 35.3, Max = 10598.

Approach and methods

- 1. Ten time dilution of soil suspension filtered at 10 *µ*m to focus on dominant bacterial groups.
- 2. **Removal, killing or preventing the growth of specific groups**
	- \triangleright according to their cell size using filtration (4 size classes)
	- by incubating the soil suspension with (i) antibiotics targeting different groups and (ii) group specific antimicrobial peptides
	- \triangleright according to the membrane properties by subjecting the soil suspension to osmotic and heat shocks
	- \triangleright enrichment by incubating the soil suspension with inhibitors
- 3. For each treatment : inoculation into 25 microcosms containing sterilized soils.
- 4. Collect after 45 days for molecular and activity analyses.
- 5. Illumina Miseq sequencing
- 6. Bioinformatic annalysis with house pipeline (A. Spor)

Experimental Design

Selected latent block model Common a $(\hat{a} = 0.32) : (\hat{K} = 15, \hat{G} = 10)$

Description of groups in columns

Groups of bacteria

Heatmap

Before **After**

Network representation

- \blacktriangleright One vertex $=$ one group of microorganism $(Z_i$ in blue) or one group of soil $(W_j$ in orange)
- Incidence matrix : use of α_{kq} matrix (abs. value > 1)
- \blacktriangleright Edge color : green for negative, purple for positive interactions

Discussions

Summary

- \blacktriangleright Parsimonious and complex model enables us to reduce data dimension
- \blacktriangleright ICL criteria to select number of groups
- \blacktriangleright Parameters biologically interpretable
- \triangleright cobiclust R package

Possible extensions

Comments

- \blacktriangleright Dispersion parameter
- \blacktriangleright Normalization
- \blacktriangleright Zero-inflation

Acknowledgments

For experiments, datasets and biological expertise

C. Mougel (IGEPP) L. Philippot (UMR AgroEcologie) A. Zancarini S. Rhodmane C. Le Signor A. Spor

For the statistical part

S. Robin S. Schbath S. Ouadah

ANR-17-CE32-0011-Next Generation Biomonitoring of change in ecosystem structure and function

References

[1] Govaert, G. and Nadif, M. (2010), **Latent Block Model for contingency table**, Communications in Statistics - Theory and Methods, 39(3), 416–425. [2] Brault, V. and Mariadassou, M. (2015), **Co-clustering through latent bloc model : a review.**, Journal de la Société Française de Statistique, 156. [3] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), **Maximum likelihood from incomplete data via the EM algorithm**, Journal of the Royal Statistical Society, B 39(1), 1-38.

[4] Jordan, M. I. et al. (1999), **Graphical models, exponential families, and variational inference. Found.**, Trends Mach. Learn.,1, 1–305.

[6] Jakushchkin, B. et al. (1999), **Deciphering the pathobiome : intra and interkingdom interactions involving the pathogem erysihe alphitoides**, Microb. Ecol., 72(4) : 870-880.