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Cell biology revolution

• The cell has been discovered in
the 17th century

• Cells are the basic unit of
structure and function in living
organisms

• Physiology emerges as the
meta-cellular science
(interaction between cells)
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Cell sorting and the investigation of between-cell variations

• Development of monoclonal
antibodies (∼ 70s)

• Cell sorting by fluoresence
(FACS)

• Cell specific proteins, DNA
content

• Limited to a few markers
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Cell biology is going molecular
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Cell biology goes genome-wide

• Classify cells into distinct cell
types

• Shape, location, interactions,
function

• Recent technological
breakthroughs allow the
molecular characterization of
cells

[2]

The single-cell rule

if IT exists, there is a single-cell version of IT (sooner or later)
Statistics for single cell data analysis F. Picard
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The RT-qPCR version

• Precise for a small number of genes

• not too expensive (100 cells)

• pros and cons of RT-qPCR are well known
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The Sequencing version [6]
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The UMI version [6]

• up to 20,000 genes analyzed

• static snapshot

• expensive (for hundreds of cells)
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The split version [12]

• up to 20,000 genes analyzed

• for millions of cells

• cheap
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A timeline: technologies [15]
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The Moore’s law of single cell [10]
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The human cell Atlas project

• comprehensive reference catalog of all
human cells

• use stable properties, transient
features, locations and abundances.

• describe each human cell by a defined
set of molecular markers

• based on DNA variations, RNA,
Epigenome at the single-cell resolution
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Single-Cell from a statistician’s perspective

From 10X Genomics
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Let’s adopt the ANOVA framework

• Yijr : expression (continuous) for gene i in condition j at replicate r

• Perform DE between conditions using model

Yijr ∼ N
(
E(Yijr ), σ2

)
E(Yikr ) = µij = µ+ αi + βj + (αβ)ij

• The parameters of the model are interpreted as :
• αi : mean expression of gene i (across conditions),
• βj : mean expression in condition j (across genes),
• (αβ)ij : interaction effect gene x condition

• Allows to integrate normalization while testing
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Testing framework

• Hypothesis : no expression difference between conditions

Hi
0 : {(αβ)i1 = (αβ)i2}

• The classical statistic for gene i is the Student statistic

Ti =
|α̂βi1 − α̂βi2|

σ̂
×
√

2R − 2 ∼
H0

T (2R − 2)

• Estimation of mean fixed effects is done by Maximum Likelihood

• Multiple testing issues are assessed using the FDR control
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What about the estimation of the dispersion parameter ?

• Refinements / difficulties concern the estimation of σ, the
dispersion parameter

• A common variance to all genes σ2 : robust but lacks of power
• A specific variance to every gene σ2i : powerful but sensitive to

outliers,

- Large sampling variance
- To be stabilized empirically

• Groups of variances (combination of both)
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The Generalized Linear Model framework

• Yijr : the read count (positive integer), for gene i in condition j

• Define the Generalized Linear Model (GLM) by setting

Yijr ∼ P(µij)

logE(Yijr ) = log(µij) = µ+ αi + βj + (αβ)ij

• Parameters have the same interpretation

• Testing hypotheses are similar : Hi
0 : {(αβ)i1 = (αβ)i2}

• Dispersion parameter ? Test statistics ?
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The Exponential family of distributions

• Family of distributions that share common mathematical properties

• The Exponential Family is one of the most widely used
• Consider two types of parameters :

• θ the natural parameter, related to the location parameter
• φ the dispersion parameter

• If Y belongs to the exponential family, its density is of the form

p(y ; θ, φ) ∝ exp
(
yθ−b(θ)
a(φ)

) θ φ

Gaussian µ σ2

Poisson log(µ) 1

Binomial logit(µ) 1

Statistics for single cell data analysis F. Picard
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The Generalized Linear Model (GLM)

• Suppose that E(Y ) = µ linearly depends on some covariates X

g(E(Y )) = g(µ) = Xβ

• η = g(µ) is often called the linear predictor

• Most of the time the canonical link is used g(µ) = g(b′(θ)) = θ

g(µ) V (µ)

Gaussian µ 1

Poisson log(µ) µ

Binomial logit(µ) µ(1− µ)

• In GLMs, overdispersion φ is not used (exponential dispersion family)
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Location / Dispersion relations

• The first two moments of the exponential family are :

E[Y ] = b′(θ) = µ

V[Y ] = b′′(θ)× a(φ)

• The expectation µ is a function of θ only (location)

• The variance is a function of both (θ, φ) (location and dispersion)

• b′′(•) is called the variance function (also denoted by V (µ)), and
describes how the variance relates to the mean

• Gaussian : (exception!) a(φ) = σ2 and b′′(θ) = 1 (cst curvature)

• Poisson, Binomial : a(φ) = 1 (no freedom)
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A matter of vocabulary

• Recall that V[Y ] = a(φ)×V (µ) where φ is the dispersion parameter

• The Poisson distribution has no dispersion parameter

• The only possible Discrete Exponential Dispersion model with a
disperson parameter are additive models such as Negative
Binomial or Poisson-Tweedie

• Parameter α may be called dispersion parameter

a(φ) V (µ)

Poisson 1 µ

QuasiPoisson φ µ

Negative Binomial 1 µ+ κµ2

Tweedie Poisson 1 µp
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Dealing with dispersion estimates

• If we choose the NB model, V (µ) = µ+ κµ2

• Then we can follow the same procedure compared with the Gaussian
case:

• Use genes as replicates to uncover the mean/variance relationship
(one gene=one point)

• perform a regression V (µ) = µ+ κGlobalµ
2 to estimate κGlobal that

would be common to every gene

• In Anders et al., the final “dispersion” estimate is for each gene :
max(κ̂Global , κ̂i ) (little loss in power)
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Testing Strategies based on LRT

• Compare different models, for instance

log(µij) = µ+ αi + βj

log(µij) = µ+ αi + βj + (αβ)ij

• Use the Ratio of log likelihoods as a Statistics, which incorporates
all infos:

LRT = −2 log

(
L(µ̂, α̂, β̂, α̂β)

L(µ̂, α̂, β̂)

)
∼
H0

χ2(∆df )

• This has been shown to be the best strategy on Sequencing data
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Conclusion: don’t think Normal !

• Use Generalized Linear Models to perform Count regression, and
not Gaussian regression on the log-counts

• Incorporate effects in the model to perform a global analysis that
accounts for distributional characteristics

• Do not perform tests that imply Poisson distribution when data are
over-dispersed

• Use Likelihood Ratio Tests to compare models

• Overdispersion leads to estimation issues due to numerical
problems

Statistics for single cell data analysis F. Picard
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How bad is the situation in single cell data ?

Overdispersion is mainly biological because diversity is high between cells
[5]
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Expression is a stochastic bursty process: biological zeros
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The curse of Dropouts

• Low starting amount of RNAs: transcripts will be missed during RT

• Amplification is needed (×106), which creates distortions

• Stochasticity of gene expression (bursty process) sparsity of the
data, high proportion of zeros

• Dropout depends on cells (different in different wells),

• Lowly expressed genes : sampling / amplification issues

• Highly expressed genes: is more likely to indicate a burst

Statistics for single cell data analysis F. Picard
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Consequences for the analysis of multiple single cells

• The data consist of a snapshot : all cells are not synchronized

• No technical replicate per cell (invasive experiment)

• A lot of zeros in the data : zero inflated count distributions

• For cell r , gene i , condition j , the expression value is modelled by

Yijr ∼ πiδ0 + (1− πi )NB(µijr )

• Difficulty to discriminate between low expression / no expression

πi = f (E(Yijr ))

Statistics for single cell data analysis F. Picard
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Two-component Generalized Linear Model [11]
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Inference for ZINB models

• Optimization can be based on IRWLS (iterative) combined with the
EM algorithm

• EM is used to retrieve the ZI compartment

• Then IRWLS is used to estimate the parameters in the NB
compartement

• Quite challenging from the numerical point of view

• Use Bayesian strategies thanks to the Poisson-Gamma
representation of NB distributions

µ ∼ Γ(a, b), Y |µ ∼ P(µ), Y ∼ NB(a,
b

a + 1
)

• Model the sampling process of genes

Statistics for single cell data analysis F. Picard
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Normalizing single cell expression data

• Adjusts for effects related to distributional differences in read counts
between cells (sequencing depth)

• Scaling factor for cell r to rescale all cell specific measures on a
common scale

E(Yijr ) = sr × µij
• How to estimate the scaling factor ? RPKM ?

• Library size normalization can be dominated by a handful of highly
expressed genes, which can bias downstream analysis .

• Quantile matching ? but difficult to apply with zero Inflation

• Litterature suggests to use the trimmed means proposed by DESeq
[13]
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Normalizing single cell expression data [13]
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Hypothesis testing becomes more intricate

• A Compartment model defined by (π, µ)

• Testing hypotheses are similar : Hi
0 : {(πj , µj) =

(
πj ′ , µj ′

)
}

• What is differential expression ? Differential dropout ?

• Difficulty to define H1
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An unprecedented challenge

• Genomics was precursor for data representation and visualization

Publication cells tissue Seq. protocol clusters

Cadwell et al. (2016) 46 visual cortex Smart-seq2 2

Tasic et al. (2016) 1,679 visual cortex SMARTer 49

Macosko et al. (2015) 44,808 retina Drop-seq 39

10x Genomics 1,306,127 brain cells 10x Gen.Chrom. 39

• We are far beyond the few clusters / some points

• Dimension reduction is mandatory for any analysis (clustering,
visualization, GRN inference, etc)
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High-dimensional count data

xij = expression of gene j in cell i

Xn×p =

 xij


1 . . . . . . . . . . . . p︸ ︷︷ ︸

genes

1
...

n

 cells

• High dimension: n grows but � p

• Count data with dropouts
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A quickie on PCA 1

• PCA represents multivariate data Xn×p using projection in a lower
dimensional space of dimension K < p.

• PCA is non supervised in the sense that the projection is done
without guidance

• The strategy is global : there may exist correlations between
variables that could be used to summarized the data, and to
visualize X despite its dimensionality.

• PCA provides orthogonal principal components that best explain the
variability of the data globally.

• The key ingredient of PCA is then the empirical covariance matrix

Sp×p =
1

n − 1
XT

c Xc
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A quickie on PCA 2

• PCs t1, ..., tK , are defined s.t. tik =
∑p

j=1 wjkXij

• wjk quantifies the weight of variable X.,j in the constitution of PC k .

• w1, ...,wK are determined iteratively by finding the PCs that carry
most inertia

V(tk) = wT
k XTXwk .

• Solve iteratively the following optimization problem:

wk = arg max
w∈Rp ,‖w‖=1

{
wTXT

c Xcw
}
, with tk = Xwk ⊥ t1, ...tk−1.

• w1, ...wr are the associated eigen vectors of wTXT
c Xcw associated

with eigen values λ1, ...λr .
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A quickie on PCA 3

• A singular value decomposition is the decomposition of a matrix Xc

such that Xc = UDVT ,

• Dr×r = diag(δ1, ...δr ) is the diagonal matrix of singular values of Xc .

• U is orthonormal, whose columns are eigen vectors of (XcXT
c )

• V is orthonormal whose columns are eigen vectors of (XT
c Xc)

• PCA can be rephrased as a minimization problem:

min
u∈Rn,v∈Rp ,‖u‖=‖v‖=1

‖Xc −UVT‖2F

• with ‖A‖2F =
∑

ij a
2
ij ,
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Brief DEA-Seq scDEA LinDimRed NonLinDimRed Conclusions References

Matrix factorization: X ≈ UVT

Cells: U ∈ Rn×K

Genes: V ∈ Rp×K

}
Low dimensional representation

→ Low-rank representation of X
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Matrix factorization: X ≈ UVT

Data visualization:
scatter plot (ui1, ui2)i=1:n
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Approximation X ≈ UVT?
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Approximation X ≈ UVT?

Principal Component Analysis:

• Find a linear projection of X with maximum variance

• SVD algorithm: argmin
U∈Rn×K ,V∈Rp×K

∥∥X−UVT
∥∥ 2

F

• Least squares approximation
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RNA-seq data = Counts

Relation between geometry and underlying model
‖ · ‖2 ↔ Gaussian distribution

• First idea: Xij ∼ P(λ)

• Highly expressed genes

↪→ large λ

↪→ Gaussian approximation
160 180 200 220 240 260

0
40

0
80

0
12

00

Figure: P(200) empirical distribution
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RNA-seq data = Counts

Relation between geometry and underlying model
‖ · ‖2 ↔ Gaussian distribution

• First idea: Xij ∼ P(λ)

• Highly expressed genes

↪→ large λ

↪→ Gaussian approximation
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00

Figure: P(2) empirical distribution
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Need for a probabilistic PCA

• Over-dispersion in RNA-seq data → Var(Xij) > E[Xij ]

• Single-cell data: zero-inflation → P(Xij = 0) > e−λ

Embed PCA with a probabilistic model

• Xij ∼ probability distribution in the exponential family

• Factorization of E[X] rather than X

• Replace ‖ · ‖2 approximation by likelihood-based approaches
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Generalized PCA[3] and Poisson NMF [8]

• Xij ∼ P(λij) with the Poisson rate matrix Λ = [λij ]n×p

• Decompose E[X] = Λ such that λij =
∑

k UikVkj

Statistics for single cell data analysis F. Picard
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Probabilistic PCA with a ZI-Gamma-Poisson model [1]

• Factors U,V become Gamma latent variables

• Marginal distribution is over-dispersed: Var(Xij) > E[Xij ]

• Dij = drop-out event indicator

Â
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Probabilistic variable selection with a spike and slab model

• Sparsity-inducing priors:

Vjk ∼ πSδ0 + (1− πS)Γ(βk,1, βk,2)
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Model inference

• Recover the posterior distributions U |X and V |X
• Estimate the factors as Û = E[U |X] and V̂ = E[V |X]

• Posteriors are not explicit

• Variational inference: approximation of the posteriors

Statistics for single cell data analysis F. Picard
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Beyond Linear projections

• Linear methods are powerful for planar structures

• High dimensional datasets are characterized by multiscale properties
(local / global structures)

• May not be the most powerful for manifolds

• Non Linear projection methods aim at preserving local
characteristics of distances
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Stochastic Neighbor Embedding 1 [14]

• (x1, . . . , xn) are the points in the high dimensional space Rp,

• Consider a similarity between points:

pi |j =
exp(−‖xi − xj‖2/2σ2i )∑
k 6=i exp(−‖xk − xj‖2/2σ2k)

, pij = (pi |j + pj |i )/2N

• σ smooths the data (linked to the regularity of the target manifold)

• σ is chosen such that the entropy of p is fixed to a given value of
the so-called perplexity

exp

−∑
ij

pij log(pij)
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Visual inspection of the influence of σ[7]
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Stochastic Neighbor Embedding 2

• Consider (y1, . . . , yn) are points in the low dimensional space R2

• Consider a similarity between points in the new representation:

qi |j =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yk − yj‖2)

• Robustify this kernel by using Student(1) kernels (ie Cauchy)

qi |j =
(1 + ‖yi − yj‖2)−1∑
k 6=i (1 + ‖yi − yk‖2)−1
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Stochastic Neighbor Embedding 3

• Minimize the KL between p and q so that the data representation
minimizes:

C (y) =
∑
ij

KL(pij , qij)

• The cost function is not convex

∂C (y)

∂y
=
∑
ij

(pij − qij)(yi − yj)

• Very sensitive to starting values
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Stochastic Neighbor Embedding 4 [7]
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Stochastic Neighbor Embedding 5 [7]
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Properties of t-SNE

• good at preserving local distances (intra-cluster variance)

• not so good for global representation (inter-cluster variance)

• hence good at creating clusters of points that are close, but bad at
positionning clusters wrt each other

• preprocessing very important : initialize with PCA and feature
selection plus log transform (non linear transform)

• percent of explained variance ? interpretation of the q distribution ?
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Single-cell RNAseq example[9]

Method pCMF PCA ZIFA t-SNE
t-SNE

(after pCMF)

Exp. Dev. 70.3 % 34.8 % 42.6 % / /

Adj. RI 38.3 % 24.9 % 38.1 % 37.7 % 53.6 %
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A taxonomy of Dimension Reduction Methods [4]
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Conclusions of a comparative study [4]

• local methods suffer from the choice of the smoothing
(neighborhood) parameter

• Kernel PCA suffers from the choice of the Kernel to correctly
approximate the manifold.

• Setting the optimization problem is the key (convex or not), trivial
solutions, local optima, computationally feasible

• nonlinear techniques for dimensionality reduction are, despite their
large variance, often not capable of outperforming traditional linear
techniques such as PCA.
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What is missing ?

• Clustering

• Trajectory inference

• Epigenomics

• Networks

Statistics for single cell data analysis F. Picard



Brief DEA-Seq scDEA LinDimRed NonLinDimRed Conclusions References

[1] Probabilistic Count Matrix Factorization for Single Cell Expression Data
Analysis, Lecture Notes in Computer Science, Berlin, Germany, 2018.
Springer.

[2] J. N. Campbell, E. Z. Macosko, H. Fenselau, T. H. Pers, A. Lyubetskaya,
D. Tenen, M. Goldman, A. M. Verstegen, J. M. Resch, S. A. McCarroll,
E. D. Rosen, B. B. Lowell, and L. T. Tsai. A molecular census of arcuate
hypothalamus and median eminence cell types. Nat. Neurosci.,
20(3):484–496, Mar 2017.

[3] Michael Collins, Sanjoy Dasgupta, and Robert E. Schapire. A
generalization of principal components analysis to the exponential family. In
Advances in Neural Information Processing Systems, pages 617–624, 2001.

[4] LJP Van der Maaten, EO Postma, and HJ Van den Herik. Dimensionality
reduction: A comparative review. TiCC, 2009.

[5] P. V. Kharchenko, L. Silberstein, and D. T. Scadden. Bayesian approach to
single-cell differential expression analysis. Nat. Methods, 11(7):740–742,
2014.

[6] T. Kivioja, A. Vaharautio, K. Karlsson, M. Bonke, M. Enge, S. Linnarsson,
and J. Taipale. Counting absolute numbers of molecules using unique
molecular identifiers. Nat. Methods, 9(1):72–74, Nov 2011.

Statistics for single cell data analysis F. Picard



Brief DEA-Seq scDEA LinDimRed NonLinDimRed Conclusions References

[7] Dmitry Kobak and Philipp Berens. The art of using t-sne for single-cell
transcriptomics. bioRxiv, 2018.

[8] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788–791, October
1999.

[9] Enric Llorens-Bobadilla, Sheng Zhao, Avni Baser, Gonzalo Saiz-Castro,
Klara Zwadlo, and Ana Martin-Villalba. Single-Cell Transcriptomics
Reveals a Population of Dormant Neural Stem Cells that Become Activated
upon Brain Injury. Cell Stem Cell, 17(3):329–340, September 2015.

[10] A. Regev, S. A. Teichmann, E. S. Lander, and I. et al. Amit. The Human
Cell Atlas. Elife, 6, 12 2017.

[11] D. Risso, F. Perraudeau, S. Gribkova, S. Dudoit, and J.-P. Vert. A general
and flexible method for signal extraction from single-cell RNA-seq data.
Nature Comm, 9(284), 2018.

[12] Alexander B Rosenberg, Charles Roco, Richard A Muscat, Anna Kuchina,
Sumit Mukherjee, Wei Chen, David J Peeler, Zizhen Yao, Bosiljka Tasic,
Drew L Sellers, Suzie H Pun, and Georg Seelig. Scaling single cell
transcriptomics through split pool barcoding. bioRxiv, 2017.

Statistics for single cell data analysis F. Picard



Brief DEA-Seq scDEA LinDimRed NonLinDimRed Conclusions References

[13] C. A. Vallejos, D. Risso, A. Scialdone, S. Dudoit, and J. C. Marioni.
Normalizing single-cell RNA sequencing data: challenges and opportunities.
Nat. Methods, 14(6):565–571, Jun 2017.

[14] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[15] Y. Wang and N. E. Navin. Advances and applications of single-cell
sequencing technologies. Mol. Cell, 58(4):598–609, May 2015.

Statistics for single cell data analysis F. Picard


	Brief Presentation of single cell sequencing
	Differential Expression Analysis for sequencing data
	Differential Expression Analysis for single cell data
	Linear Dimension reduction and data visualization
	Alternatives to PCA, non linear embedding methods
	Conclusions
	References

