Sampling impact on inference structures in networks.

Application to protein-protein network

Pierre Barbillon, Julien Chiquet, Timothée Tabouy

UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay

NETBIO

November 9-10, 2017

Plan

1. Random Graphs & Stochastic Block Model

2. Sampling strategies

3. About ESR1 gene

Random Graphs

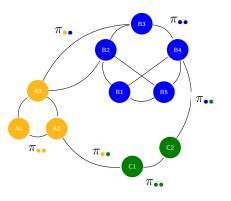
Generality

- ightharpoonup A Graph : G = (Summits, Edges)
- Adjacency matrix : $X = (X_{ij})$
- ▶ Models a relationship : X_{ij} lives in $\{0,1\}$
- -> Erdős-Rényi (1959)

In practice

- Heterogeneity of connections
- Different connectivity profiles
- → How to model the heterogeneity of the network?

Stochastic Block Model



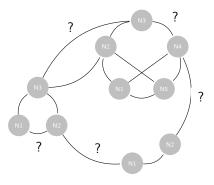
Stochastic Block Model

Let n nodes divided into

- $ightharpoonup \mathcal{Q} = \{ ullet, ullet, ullet \}$ classes

$$\begin{split} Z_i &= \mathbf{1}_{\{i \in \bullet\}} \ \sim^{\mathsf{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q}, \\ X_{ij} \ | \ \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet}) \end{split}$$

Statistical inference



Stochastic Block Model

Let *n* nodes divided into

$$\triangleright \mathcal{Q} = {\bullet, \bullet, \bullet}, card(\mathcal{Q})$$
 known

$$\blacktriangleright$$
 $\pi_{\bullet \bullet} = ?$

Nowicki, Snijders, JASA, 2001

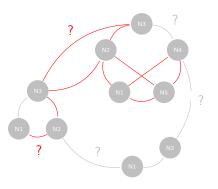
Estimation and prediction for stochastic blockstructures.

Daudin, Picard, Robin, Statistics and Computing, 2008

A mixture model for random graphs.

Inference in the presence of missing data

Central problem of the thesis



Stochastic Block Model

Edges are observed (or not) according to a specific sampling process must be taken into account in the inference

- Purely random process?
- Depending on the connectivity?
- Depending hidden colors?

Handcock, Gile, The Annals of Applied Statistics, 2010 Modeling social networks from sampled data

Kolaczyk, Springer, 2009

Statistical analysis of network data

Inference in the presence of missing data

Sampling matrix

$$(R_{ij}) = \begin{cases} 1 & \text{if } X_{ij} \text{ is observed,} \\ 0 & \text{if } X_{ij} \text{ is not observed.} \end{cases}$$

Missing at Random (Rubin, 1976)

When the sampling process satisfies the following equation :

$$p(R|X) = p(R|X_{obs}),$$

the inference is done only on the likelihood of the observed data.

Dyad-centered sampling strategies

1. Random dyad sampling

$$\forall (i,j) \in \{1,\ldots,n\}^2, \quad \mathbb{P}(R_{ij}=1) = \rho.$$

2. Double standard sampling

$$\left\{ \begin{array}{l} \mathbb{P}(R_{ij}=1|X_{ij}=1)=\rho_{1}, \\ \mathbb{P}(R_{ij}=1|X_{ij}=0)=\rho_{0}. \end{array} \right.$$

Node-centered sampling strategies

1. Star sampling

$$\forall i \in \{1,\ldots,n\}, \quad \mathbb{P}(S_i=1)=\rho.$$

2. Star degree sampling

$$\mathbb{P}(S_i = 1 | D_i) = \mathbb{P}(Z \leqslant a + bD_i) \text{ where } D_i = \sum_j X_{ij}.$$

3. Class sampling

$$\mathbb{P}(S_i = 1 | Z_i) = \rho_{Z_i}$$

Where $S_i = \mathbb{1}_{\mathsf{node}\; i \; \mathsf{is} \; \mathsf{sampled}}$

Recall on binary SBM inference

Remarks / questions

- ▶ The SBM is a latent variable model
- ► Can you use an EM algorithm?
 - \hookrightarrow Answer : No

Complete log-likelihood & Variational hypothesis

$$\log(p_{\theta}(X,Z)) = \sum_{1 \leq i < j \leq n} \sum_{q,l=1}^{Q} Z_{iq} Z_{jl} \log\{b(X_{ij},\pi_{ql})\} + \sum_{i=1}^{n} \sum_{q=1}^{Q} Z_{iq} \log(\alpha_q)$$

- ightarrow **E Step** is not tractable : $\mathbb{E}_{\theta}[Z_{iq}Z_{jl}|X]$.
- \rightarrow the Z_i are assumed independent (mean-field approximation).

Results on MAR's inference

Connectivity matrix inference

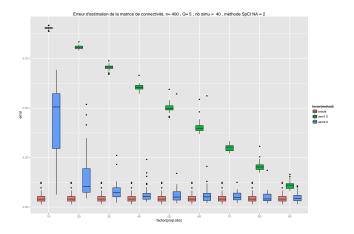


Figure - n=400, Q=5.

Results on MAR's inference Adjusted Rand Index



Figure - n=400, Q=5.

Results on MAR's inference Inference of the number of classes

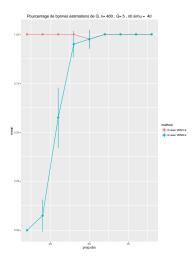


Figure - n=400, Q=5.

Data analysis

About ESR1 and the network selected:

Estrogen receptor 1 (ESR1) is a gene that encodes an estrogen receptor protein (ER), a central actor in breast cancer.

- \rightarrow **Where** : The platform 483 string (Szklarczyk et al., 2015) accessible via http://www.string-db.org
- → What : Protein-Protein Interaction (PPI)
- \rightarrow **Links**: The value of an edge in this network corresponds to 487 a score obtained by aggregating different types of knowledge (wet-lab experiments, 488 textmining, co-expression data, etc. . .), reflecting a level of confidence
- → Number of nodes (neighbour) : 741 proteins

Data analysis and inference

Adjacency Matrix:

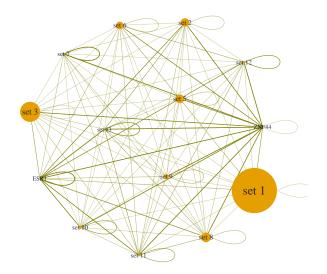
$$\mathbf{A}^{\gamma} = (A^{\gamma})_{ij} = \begin{cases} 1 & \text{if } \omega_{ij} > 1 - \gamma, \\ \text{NA} & \text{if } \gamma \leq \omega_{ij} \leq 1 - \gamma, \\ 0 & \text{if } \omega_{ij} < \gamma. \end{cases}$$
 (1)

- \rightarrow Threshold : $\gamma = 0.25$
- ightarrow **Dyads** : 2546 dyads equal to 1, 264073 dyads equal to 0 and 7551 missing dyads.

Inference with missing data

- Sampling selected : double standard sampling
- Number of clusters : 15

Clusters Network



Connectivity matrix

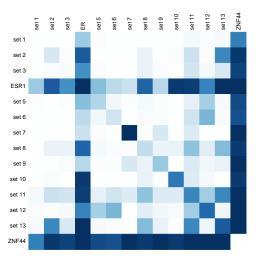


Figure – Matrix of connectivity $\hat{\pi}$ for NMAR inference (double standard); intensity of the color is proportional to the probability of connection between blocks.

Gene Ontology

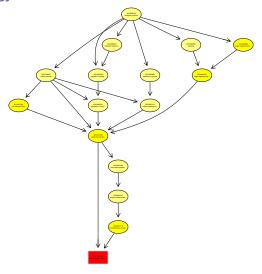


Figure – DAG of ontologies to which genes are annotated if the proteins encoded by these genes have been shown to be involved in a biological process

Thank you for your attention!