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Gene expression regulation
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Previous work

Predicting Epigenetics data from DNA sequence

Whitaker, J. W. et al. Nat. Methods (2015)
Zhou, J. et al Nat. Methods (2015)

Predicting gene expression from epigenetics data
RACER : Y. Li and al. PLoS (2014)
TEPIC : Schmidt F. et al. Nucleic Acids Res (2017)

 Question: Can we identify directly the DNA determinants involved in
gene regulation?
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Plan

1 Model building
2 Comparison with experimental data (Chip-Seq)
3 Advanced model
4 Biological interpretation
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Our Work

Originality :

Modeling gene expression using DNA sequence data only
ONE model per patient (Cancer tumors)

Data

Gene expression measurements for each patient (RNA-Seq)

DNA sequence (Genome Reference GRCh38/hg38)

Nucleotide and di-nucleotide compositions: %CG = #CG/(length-1)

TF binding motifs : PWM scores

DNA shapes (computed with the Bioconductor package DNAshapeR )

N.B.: Similar work on yeast Kasowski et al. Science (2013)
Sequence variations affect histone modifications
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Response variable : RNA-Seq (log transformed values)
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Linear model

We built a global linear regression model to explain the expression of
genes using DNA/RNA features associated with their regulatory
regions (e.g. nucleotide composition, TF motifs, DNA shapes):

Y = Xβ + ε

where
Y[n×1] = (y1, . . . , yn)

′ is the vector of observed gene expression,
X[n×p] = (xij) is the feature matrix (xij is feature j for gene i),
β[p×1] = (β1, . . . , βp)

′ is the vector of regression coefficients
ε[n×1] = (ε1, . . . , εn)

′ is the vector of the residual errors.

(n ∼ 20000)
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Variable selection with Lasso

Linear regression with `1-norm penalty or Lasso (Tibshirani, 1996)
applied to standardized data:

β̂LASSO = argmin
β

(
n∑

g=0
(Y − Xβ)2 +λ

p∑
i=0
|β|

)

The penalty λ is chosen by 10-fold cross-validation to minimize the
mean square prediction error.

Some coefficients βi are set to 0 exactly (`1-norm geometry).

λ defines the number of selected variables.
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Model evaluation

Criterion :
1 Mean square error (MSE)
2 Correlation coefficient Corr(Y , Ŷ ) between the measured expression Y

and the predicted expression Ŷ

in a 10-fold cross-validation procedure:
1 Model is learned in the training data
2 MSE/Corr(Y , Ŷ ) is evaluated in the test data.

Data shown : RNA-Seq gene expression (TCGA) from 12 cancers
types, 20 patients per cancer.

(+ Further evaluation not shown: 1,270 RNA-Seq samples and 582
microarrays datasets.)
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Promoter definition

Nucleotide and di-nucleotide compositions: %CG = #CG/(length-1)
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Promoter definition
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The highest accuracy was obtained combining the 3 segments.
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TSS choice
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Our model achieved higher predictive accuracy with the promoters
centered around the 2nd TSS, in agreement with Cheng et al. (2012).
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All (di-)nucleotides vs CpG only

<2.2e−16

0.35

0.40

0.45

0.50

0.55

C
or

re
la

tio
n Predictive variables

dint in CORE+DU+DD

CpG in CORE+DU+DD

Considering all (di-)nucleotides achieved better model performance.
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Contribution of TF motifs and local DNA shapes
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The increase in performance when including TF motifs or DNA shapes
is rather modest.
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1 Model building
2 Comparison with experimental data (Chip-Seq)
3 Advanced model
4 Biological interpretation
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DNA features vs. experimental data (ChIP-seq)

Comparison with models integrating:
TF-binding signals with Chip-Seq (RACER, Y. Li and al. PLoS, 2014)
Open-chromatin signals (TEPIC, Schmidt F. et al. NAR, 2017)

In both cases, the models were built using the same set of genes:
(i) on the original data,
(ii) on randomized predictive variables (gene centered shuffling: rand)
(iii) on the maximum value of all predictive variables (gene centered
maximum: max).
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Comparison with model integrating TF-binding signals
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? ? ? In cases (ii) and (iii), the links between the predictive variables
and expression is broken and a regression model is expected to

poorly perform as our model does (Left, light pink). ? ? ?
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Comparison with model integrating open-chromatin signals

? ? ? In cases (ii) and (iii), the links between the predictive variables and expression is broken and a regression model is
expected to poorly perform as our model does (Left, light pink). ? ? ?
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1 Model building
2 Comparison with experimental data (Chip-Seq)
3 Advanced model
4 Biological interpretation
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Gene expression regulation
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Contribution of additional genomic regions
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 Nucleotide and di-nucleotide compositions: %CG = #CG/(length-1)
in 8 selected regions (20 variables per region)
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Contribution of additional genomic regions
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DNA regions ‘forward-like’ selection procedure
Our model : Nucleotide and di-nucleotide compositions in 8 selected
regions (20 variables per region)
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Contribution of additional genomic regions

DNA regions ‘forward-like’ selection procedure
Our model : Nucleotide and di-nucleotide compositions in 8 selected
regions (20 variables per region)
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Stable variables selection

Stability selection (Meinshausen et al., 2010)

Lasso inference is repeated 500 times where, for each iteration,
(i) only 50% of the genes is used (uniformly sampled)
(ii) a random weight (uniformly sampled in [0.5; 1]) is attributed to
each predictive variable.

A variable is considered as stable if selected in more than 70% of the
iterations.

(Functions stabpath and stabsel from the R package C060 for
glmnet models.)
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Stable variables selection
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(Average ∼ 16 variables per sample)
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A) DNA features associated with good predictions

We characterized best predicted genes with regression trees (CART)
which performs sequentially binary splits (minimizing RSS)
Response variable is the prediction error of our linear model.
(di-)nucleotide compositions are used as classifiers
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A) DNA features associated with good predictions
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Columns : samples gathered by cancer type, ranked by decreasing error

Lines : the 3,680 groups of genes ranked by decreasing error

Red and light blue: Top 25% well predicted groups of genes
 Our model mainly fits certain classes of genes with specific genomic features
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Groups well predicted in all cancers

Groups of genes well predicted in all cancers (low prediction error)
seems to correspond to ubiquitously expressed and housekeeping genes.

 Functional enrichment for general and widespread biological processes:
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Groups well predicted in only certain cancer types

In contrast, groups well predicted in only certain cancers are
associated to specific biological function.

 For instance, a regression tree learned in one PAAD sample
identified a group of 1,531 genes, which has:

Low prediction error in LGG and PAAD but high error in LAML, LIHC
and DLBC.
Functional enrichment for specific biological processes (brain).
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B) Link with the genome architecture

Do the groups of genes identified by the regression trees correspond to
specific TADs ?
Motivations

Genes within the same TAD tend to be coordinately expressed (Nora et
al. 2012, Fanucchi et al. 2013).
Nucleotide composition along the genome can help define TADs
(Jabbari and Bernardi, 2017)

Validation :
We used the 373 TADs containing more than 10 genes.
For each TAD and each (di-)nucleotide, we used a Kolmogorov-Smirnov
test to compare the (di-)nucleotide distribution of the embedded genes
with that of all other genes (multiple testing controlled with FDR).

 87% of the TADs are characterized by at least one specific
nucleotide signature.
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B) Link with the genome architecture

We next considered the 967 groups of genes whose expression is
accurately predicted by our model (regression trees).
 60% of the well predicted groups of genes (top 25% well predicted)
were enriched for at least one TAD (p-value < 0.05, hyper-geometric
test).
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TAD enrichment within groups of genes
whose expression is accurately predicted by our model.
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Conclusions

We confirm the existence of sequence-level instructions for gene
expression by developing a method able to explain the expression of
different genes using only DNA sequence.

Our model is as accurate as methods based on experimental data but
its biological interpretation appears more straightforward.

We provide evidence that the genes nucleotide composition can be
linked to co-regulations associated with genome 3D architecture and
to associations of genes within TADs.
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Ongoing work

Further improve the model
Relax linearity assumption ?
Include variable interactions ?
(+ Comparison with deep learning approaches)
Integrate TF binding motifs ?

Get more biology

TADs
methylation
...
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Inference from experimental data references

[1] (RACER) Li Y., Liang M., Zhang Z. Regression analysis of combined
gene expression regulation in acute myeloid leukemia. PLoS Comput Biol.
2014.

[2] (TEPIC) Schmidt F. et al. Combining transcription factor binding
affinities with open-chromatin data for accurate gene expression prediction.
Nucleic Acids Res. 2017.
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Thank you for your attention
Preprint available on BioRxiv

Probing instructions for expression regulation in gene nucleotide
compositions (under revision) M. Taha, C. Bessière, F. Petitprez, J. Vandel,
J.-M. Marin, L. Bréhélin, S. Lèbre, C. Lecellier.
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