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Network inference

Principle

large RNA-seq expression data
(n� p)

individuals
n (n� p)

X =

 . . . . . .

. . X j
i . . .

. . . . . .


︸ ︷︷ ︸

variables (gene expressions), p

Network : visualization of
interactions between genes

Aim : obtain a network with

node : gene ;

edges : significant and direct co-expression between two genes

Alyssa Imbert (Netbio) Imputation of missing individuals for network inference from RNA sequencing data09/11/2017 3 / 32



Network inference

Graphical Gaussian Model (GGM)
framework : micro-array

(Xi )i=1,...,n Gaussian random variables i.i.d. (N (0,Σ)) (j = 1, . . . , p)

Use of partial correlations : πjj ′ = cor(X j ,X j ′ |X k , k 6= j , j ′)

j and j ′ are linked⇔ cor(X j ,X j ′ |(X k)k 6=j ,j ′) 6= 0

Various approaches to infer gene expression networks :

Schäfer and Strimmer (2005)
I with bootstrapping or shrinkage and a proposal for a Bayesian test for

significance

Sparse approaches :
I Meinshausen and Bühlmann (2006)
I Friedman and al. (2008)
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Network inference

Network inference and RNA-seq data

RNA-seq data :

I counts → discrete data ;

I over-dispersed data (variance > mean).

Network inference method :

I Transform data → approach gaussian distribution
→ GGM

I Use appropriate models based on Poisson distribution
F Log-linear Poisson graphical model(llgm), Allen et Liu (2012) ;
F Hierarchical log-normal Poisson graphical model, Gallopin & al. (2013).
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Network inference

Log-linear Poisson graphical model(llgm)
Allen G.I. et Liu Z., 2012

Power transformation of the data : xij → xαij , α ∈]0, 1]

Let zj = (xα1j , ..., x
α
nj) be the transformed vector of expression values

for gene j

p(Zij |zi(−j)) ∼ P(µj) with log(µj) =
∑
j ′ 6=j

βjj ′ z̃ij ′

where z̃ corresponds to a standardization of the log-transformed data

edge between genes j and j ′ ⇔ βjj ′βj ′j 6= 0

sparse model → add a `1 penalty to the log-likelihood with a
regularization parameter λ

choice of λ with a re-sampling procedure : criterion StARS 1

1. Stability Approach to Regularization Selection Liu H. et al., 2010
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Network inference

StARS

Choice λ with StARS :

creation of a vector Λ with decreasing values λ

subsamples of X

infer a network for each subsample and regularization parameter λ of
vector Λ

λopt = argminλ

{
min0≤ρ≤λ

[∑
j<k 2Ājk(ρ)(1− Ājk(ρ))/

(
p

2

)]
≤ β

}
where

Ājk(λ) = 1
B

∑B
b=1 A

(b)
jk , β = 0.05 by default
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Problem

Motivation

RNA-seq data : generally, few samples
↪→ infer network is difficult

Network inference is sensitive to influential observations,
Bar-Hen A., 2016.

Aim : Find a solution to limit the loss of information

Auxiliary data : bring information
↪→ use this supplementary information to improve network inference

Alyssa Imbert (Netbio) Imputation of missing individuals for network inference from RNA sequencing data09/11/2017 9 / 32



Problem

Framework and notation
Matrix X̃ of size n1×p → expression measures of interest (RNA-seq) ;
matrix Y of size n × q → metabolome, phenotypic data, qPCR
expression,. . . ;
n1 samples (individuals) in common between X̃ and Y ;
presence of missing data −→ experimental reasons

X̃ Y
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Problem

Problem

Search an imputation method which allows to :

preserve the link between variables (genes)
→ impute missing individuals entirely = impute simultaneous all
variables

Take into account uncertainty which is linked to imputation

Aim : improve the quality of inference by using external information
(important n very small)
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Multiple hot-deck imputation (hd-MI)

Multiple hot-deck imputation (hd-MI)
General schema

Incomplete

dataset X̃

M duplicates
of X̃

M imputed
datasets, X∗,m M inferred networks

Final network

Imputation Statistical analysis Combine M results into
a single final result

Hot-deck Network inference
llgm + StARS

“Pool”
study of frequency

of appearance of edges

llgm = log-linear Poisson graphical model (Allen et Liu, 2012)

Alyssa Imbert (Netbio) Imputation of missing individuals for network inference from RNA sequencing data09/11/2017 13 / 32



Multiple hot-deck imputation (hd-MI)

Hot-deck imputation 2

A set of methods based on the concept of “donors”

• Definition

Imputed
dataset

Incomplete
dataset

individu with
missing variable

other individuals
of the same dataset

Computation of
similarities

Imputation

Creation of
a pool of donors

select at random
a donor

• Our case :

RNA-seq
data

RNA-seq
data

RNA-seq
data

auxiliary data auxiliary data

auxiliary data

Computation of
similarities

Creation of a
pool of donors

2. Revue : Andridge R. R. et Little R. J. A., 2010
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Multiple hot-deck imputation (hd-MI)

Illustration : “Pool”
Frequency of appearance of edges
Example for M = 100 networks :

study the number of times an
edge is predicted among the M
networks :

r(e) =
number of times the edge eis predicted

M

Choice a reliability threshold :
r0

Final network composed of the
edges e such that r(e) ≥ r0
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Multiple hot-deck imputation (hd-MI)

Multiple hot-deck imputation

Test 2 approaches :

with an affinity score 3 (R package hot.deck) :

s(i , j) =
1

q

q∑
k=1

I{|yik−yjk |<σ}

where σ = fixed threshold and D(i) = {j : s(i , j) = maxl 6=i s(i , l)}

with k nearest neighbors (knn), euclidean metric :

d(i , j) =

q∑
k=1

(yik − yjk)2

3. Cranmer S.J. and Gill J., 2012
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Multiple hot-deck imputation (hd-MI)

How choose the threshold σ ?
Affinity score : s(i , j) = 1

q

∑q
k=1 I{|yik−yjk |<σ}

Criterion : study of averaged inertia intra-D(i) :

Vintra =

∑
i

∑
d : donor of i(xi−xd )2

Di

n

where

n : number of missing individuals

Di : number of donors for individual i .
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Evaluation process

Framework

Test on real datasets coming from 2 projects :
I GTEx : Genotype-Tissue Expression 4,
I DiOGenes 5,

3 imputation methods :
I simple and naive method : imputation by mean
I multiple imputation based on PCA : MIPCA, Josse et al., 2011
I our method : hd-MI

10%, 20%, 30%, 40% missing individuals

4. Lonsdale et al., 2013
5. Larsen et al., 2010
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Evaluation process

Overview of the evaluation process

reference missing

mean

MIPCA

hd-MI

X0 X̃

X

Y

complete dataset

dataset with
missing rows

auxiliary dataset networks inferred from
imputed datasets

(3 methods)

network inference

complete cases

evaluation
comparison with
reference (PR

curves, NMI for gene
modules)remove a fraction

f of rows
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Evaluation process

Precision/recall
Precision : Pr = VP/(VP + FP)

number of predicted edges present in the reference network

total number of predicted edges

Rappel : R = VP/(VP + FN)

number of predicted edges present in the reference network

number of edges in the reference network

reference networkpredicted network

VP

FP

FN
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Evaluation process

Gene modules

Aim : see if imputation preserve gene modules

Search gene modules in the different networks : clustering of nodes

Comparison with gene modules obtained with reference network :
NMI 6

I NMI between [0, 1]
I NMI = 1 : modules between the 2 networks are the same
I NMI = 0 : modules between the 2 networks are independent

6. normalized mutual information measure, Danon L. and al (2005)
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Results GTEx

GTEx
Data presentation

RNA-seq data on more than 30 human tissues ;

Choice of 2 tissues : 2 tissues whose expression profile are close 7

I X : lung,
I Y : thyroid,

normalization of RNA-seq data RNA-seq : TMM package edgeR ;

description of datasets :
I 320 samples for X ,
I 323 samples for Y ,

evaluation : keep only 221 common samples ;

select the most variables genes (higher variances) :
I for X : p= 100,
I for Y : q = 50,
I 36 common genes.

Results for 20% missing observations

7. Melé et al., 2015
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Results GTEx

Choice of σ and distribution of appearance of edges
GTEx, 20% missing observations

Choice of σ

Choice : σ = 2

Distribution d’apparition d’une arête
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Results GTEx

Curve precision/recall
GTEx, 20% missing observations
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Results GTEx

Comparison of gene modules
GTEx, 20% missing observations

Search of gene modules on the largest component :
↪→ function spinglass community()

comparison gene modules : NMI

graph reference missing mean MIPCA hd-aff hd-knn

] modules 7 7 7 1 8 8

NMI 0.557 0.573 1 8 0.667 0.603

8. only 3 genes on the largest component
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Results DiOGenes

DiOGenes
Data presentation

CID1 CID2 CID3
8 weeks ≈ 6 months

Aim:
Loss > 8% of weight

5 groups with
different diets

Low-calorie diet Maintenance phase

RNA-seq :

433 individuals in CID1,

307 individuals in CID2,

189 common individuals,

317 genes

Auxiliary data : RT-qPCR :

166 individuals for CID1,

172 individuals for CID2,

284 genes.
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Results DiOGenes

Curves precision/recall, CID1
DiOGenes, 20% missing observations

Alyssa Imbert (Netbio) Imputation of missing individuals for network inference from RNA sequencing data09/11/2017 29 / 32



Results DiOGenes

Gene modules, CID1
DiOGenes, 20% missing observations

Search of gene modules on the largest component :
↪→ function spinglass community()

comparison gene modules : NMI

graph reference missing mean MIPCA hd-aff hd-knn

] modules 7 7 7 10 8 8

NMI 0.526 0.612 0.346 0.493 0.492

NMI with CID2 0.423 0.421 0.424 0.341 0.38 0.383
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Results DiOGenes

Conclusion

For high precision, best recall with our method hd-MI

less false positives with hd-MI

GTEx : best nmi with hd-MI
−→ preserve gene modules

beyond 30% missing individuals, results deteriorate :
−→ curve PR for hd-MI below missing PR curve

Article : in revision

R package : RNAseqNet

Alyssa Imbert (Netbio) Imputation of missing individuals for network inference from RNA sequencing data09/11/2017 31 / 32



Results DiOGenes

Thanks for your attention
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