Graphical model inference with unobserved variables via latent tree aggregation

Geneviève Robin Christophe Ambroise Stéphane Robin

UMR 518 AgroParisTech/INRA MIA Équipe Statistique et génome

NETBIO, November 9th 2017

- 2 Gaussian graphical models
- GGM with missing variables
- 4 EM with aggregation of spanning trees
- 5 Experiments simulations and flow cytometry data

直 マ イヨ マ イヨ ア

Outline

Introduction

- 2 Gaussian graphical models
- 3 GGM with missing variables
- 4 EM with aggregation of spanning trees
- 5 Experiments simulations and flow cytometry data

同 ト イヨ ト イヨ ト

Biological networks

Different kinds of biological interactions

Families of networks

- protein-protein interactions,
- metabolic pathways,
- regulation network,

• ...

< ∃ >

Biological networks

Different kinds of biological interactions

Regulation example : SOS Network E. Coli

 \rightsquigarrow Let us focus on regulatory networks

Biological networks

Different kinds of biological interactions

Regulation example : SOS Network E. Coli

同 ト イヨ ト イヨ ト

 \rightsquigarrow Let us focus on regulatory networks ... and look for influence network

Regulation

Gene expression is regulated (inhibited or activated)

- by region (i.e., brain vs liver)
- by development stage (i.e. fetal vs. adult)
- by dynamic response to environment
- by gene status (i.e. mutant vs. wild)

Lactose Operon, Nobel price, Jacob, Monod et Lwoff (1965)

- **→** → **→**

Problem

Infer the interactions between genes from microarray data

▲ 同 ▶ → 三 ▶

Problem

Infer the interactions between genes from microarray data

Major Issues

• combinatory:
$$2^{\frac{p(p-1)}{2}}$$
 possible graphs

• dimension problem: $n \ll p$ reduced to $n \approx p$

・ 同 ト ・ 三 ト ・

Problem

Infer the interactions between genes from microarray data

Major Issues

- combinatory: $2^{\frac{p(p-1)}{2}}$ possible graphs
- dimension problem: $n \ll p$ reduced to $n \approx p$

Here, we reduce p to a number of fixed genes of interest

• □ ▶ • □ ▶ • □ ▶ •

Our ideas to tackle these issues

 \leadsto Introduce prior taking the topology of the network into account for better edge inference

Relying on biological constraints

7 / 52

Robin, Ambroise, Robin GGM Inference via latent tree aggregation

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Our ideas to tackle these issues

 \rightsquigarrow Introduce prior taking the topology of the network into account for better edge inference

Relying on biological constraints

few genes effectively interact (sparsity),

Our ideas to tackle these issues

 \rightsquigarrow Introduce prior taking the topology of the network into account for better edge inference

Relying on biological constraints

- few genes effectively interact (sparsity),
- Inetworks are organized (latent structure or Missing variables).

- 4 同 6 4 日 6 4 日 6

Outline

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ●

Outline

Introduction

Gaussian graphical models

GGM with missing variables

- 4 EM with aggregation of spanning trees
- 5 Experiments simulations and flow cytometry data

同 ト イヨ ト イヨ ト

Gaussian graphical models

General settings

The Gaussian model

- Let $X \in \mathbb{R}^p$ be a random vector such as $X \sim \mathcal{N}(\mathbf{0}_p, \mathbf{\Sigma})$;
- let (X¹,...,Xⁿ) be an i.i.d. size-n sample (e.g., microarray experiments);
- let **X** be a $n \times p$ matrix such as $(X^k)^{\mathsf{T}}$ is the *k*th row of **X**;
- let $\mathbf{K} = (K_{ij})_{(i,j)\in\mathcal{P}^2} := \mathbf{\Sigma}^{-1}$ be the concentration matrix.

・ 同 ト ・ ヨ ト ・ ヨ ト

Gaussian graphical models

General settings

The Gaussian model

- Let $X \in \mathbb{R}^p$ be a random vector such as $X \sim \mathcal{N}(\mathbf{0}_p, \mathbf{\Sigma})$;
- let (X¹,...,Xⁿ) be an i.i.d. size-n sample (e.g., microarray experiments);
- let **X** be a $n \times p$ matrix such as $(X^k)^{\mathsf{T}}$ is the *k*th row of **X**;

• let
$$\mathbf{K} = (K_{ij})_{(i,j)\in\mathcal{P}^2} := \mathbf{\Sigma}^{-1}$$
 be the concentration matrix.

The graphical interpretation

$$X_i \perp X_j | X_{\mathcal{P} \setminus \{i,j\}} \Leftrightarrow K_{ij} = 0 \Leftrightarrow ext{ edge } (i,j) \notin ext{ network},$$

since $r_{ij|\mathcal{P}\setminus\{i,j\}} = -K_{ij}/\sqrt{K_{ii}K_{jj}}$.

 \rightsquigarrow K describes the graph of conditional dependencies.

イロト 不得 トイヨト イヨト 二日

Gaussian graphical models Example

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$
, $\Sigma = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1.5 & -0.5 \\ -1 & -0.5 & 1.5 \end{pmatrix}$

$$K = \Sigma^{-1} = \begin{pmatrix} 1 & -0.5 & 0.5 \\ -0.5 & 1 & 0 \\ 0.5 & 0 & 1 \end{pmatrix}, \qquad \qquad \mathcal{G} = \tag{2}$$

- Underlying graph $\mathcal{G} = (V, E), V = \{1, \dots, p\}$
- The edge $\{i, j\}$ is in E if $K_{ij} \neq 0$

Inferring $\mathcal{G} \Leftrightarrow$ inferring the support of K.

(日) (同) (日) (日) (日)

Inference of K

Estimate K from data

Maximum likelihood estimator:

$$\hat{K}^{MLE} = \arg \max_{K} \log \det(K) - \operatorname{tr}(K\Sigma_n)$$

$$= \Sigma_n^{-1}$$
(1)

Hypothesis on the structure of the support of K

- Penalized Log-likelihood
- Tree hypothesis

- 4 同 6 4 回 6 4 回 6

GGMs and regression

Network inference as *p* independent regression problems

One may use p different linear regressions

$$X_i = (X_{i})^{\mathsf{T}} \alpha + \varepsilon,$$
 where $\alpha_j = -K_{ij}/K_{ii},$

直 と く ヨ と く ヨ と

GGMs and regression

Network inference as p independent regression problems

One may use p different linear regressions

$$X_i = (X_{i})^{\mathsf{T}} \alpha + \varepsilon,$$
 where $\alpha_j = -K_{ij}/K_{ii},$

Meinshausen and Bülhman's approach (06)

Solve *p* independent Lasso problems (ℓ_1 -norm enforces sparsity):

$$\widehat{\alpha} = \arg\min_{\alpha} \frac{1}{n} \left\| \mathbf{X}_{i} - \mathbf{X}_{i} \alpha \right\|_{2}^{2} + \rho \left\| \alpha \right\|_{\ell_{1}},$$

where X_i is the *i*th column of X, and X_{i} is the full matrix with *i*th column removed.

同 ト イ ヨ ト イ ヨ ト

GGMs and regression

Network inference as p independent regression problems

One may use p different linear regressions

$$X_i = (X_{i})^{\mathsf{T}} \alpha + \varepsilon,$$
 where $\alpha_j = -K_{ij}/K_{ii},$

Meinshausen and Bülhman's approach (06)

Solve *p* independent Lasso problems (ℓ_1 -norm enforces sparsity):

$$\widehat{\alpha} = \arg\min_{\alpha} \frac{1}{n} \left\| \mathbf{X}_{i} - \mathbf{X}_{i} \alpha \right\|_{2}^{2} + \rho \left\| \alpha \right\|_{\ell_{1}},$$

where X_i is the *i*th column of X, and X_{i} is the full matrix with *i*th column removed.

Major drawback: need of a symmetrization step to obtain a final estimate of \mathbf{K} .

GGMs and Lasso

Solving p penalized regressions \Leftrightarrow maximize the penalized pseudo-likelihood

Consider the approximation $\mathbb{P}(X) = \prod_{i=1}^{p} \mathbb{P}(X_i | X_{\setminus i})$.

Proposition

The solution to

$$\widehat{\mathbf{K}} = \arg\max_{\mathbf{K}, \mathcal{K}_{ij} \neq \mathcal{K}_{ji}} \log \widetilde{\mathcal{L}}(\mathbf{X}; \mathbf{K}) + \rho \|\mathbf{K}\|_{\ell_1}, \qquad (2)$$

with

$$\tilde{\mathcal{L}}(\mathbf{X};\mathbf{K}) = \sum_{i=1}^{p} \Big(\sum_{k=1}^{n} \log \mathbb{P}(X_{i}^{k}|X_{\setminus i}^{k};\mathbf{K}_{i}) \Big),$$

shares the same null-entries as the solution of the p independent penalized regressions.

・ 同 ト ・ ヨ ト ・ ヨ ト

GGMs and Lasso

Solving p penalized regressions \Leftrightarrow maximize the penalized pseudo-likelihood

Consider the approximation $\mathbb{P}(X) = \prod_{i=1}^{p} \mathbb{P}(X_i | X_{\setminus i})$.

Proposition

The solution to

$$\widehat{\mathbf{\mathsf{K}}} = \mathop{\arg\max}_{\mathbf{\mathsf{K}}, \mathcal{K}_{ij} \neq \mathcal{K}_{ji}} \log \widetilde{\mathcal{L}}(\mathbf{\mathsf{X}}; \mathbf{\mathsf{K}}) + \rho \left\|\mathbf{\mathsf{K}}\right\|_{\ell_{1}},$$

with

$$\tilde{\mathcal{L}}(\mathbf{X};\mathbf{K}) = \sum_{i=1}^{p} \Big(\sum_{k=1}^{n} \log \mathbb{P}(X_{i}^{k}|X_{\setminus i}^{k};\mathbf{K}_{i}) \Big),$$

shares the same null-entries as the solution of the p independent penalized regressions.

→ Those p terms are not independent, as K is not diagonal !
 → Still requires the post-symmetrization

(2)

GGMs and penalized likelihood

The penalized likelihood of the Gaussian observations [Banerjee et al., 2008]

Use a penalty term

$$\frac{n}{2}\left(\log \det(\mathbf{K}) - \operatorname{Tr}(\mathbf{S}_{n}\mathbf{K})\right) - \rho \|\mathbf{K}\|_{\ell_{1}},$$

where \mathbf{S}_n is the empirical covariance matrix.

Natural generalization

Use different penalty parameters for different coefficients

$$\frac{n}{2}(\log \det(\mathbf{K}) - \operatorname{Tr}(\mathbf{S}_{n}\mathbf{K})) - \|\rho_{\mathbf{Z}}(\mathbf{K})\|_{\ell_{1}},$$

where $\rho_{\mathbf{Z}}(\mathbf{K}) = (\rho_{Z_i,Z_j}(K_{ij}))_{i,j}$ is a penalty function depending on an unknown underlying structure \mathbf{Z} .

GGMs and Tree structure

The graph is a tree

• Chow-Liu algorithm (1968) Input Σ_n , Output \hat{T}^{CL} , \hat{K}^{CL}

$$\hat{T}^{CL} = \underset{T \text{ arbre}}{\operatorname{arg max}} \underbrace{\log(P(X;T))}_{\sum_{\{i,j\}\in E_T} I(X_i,X_j)+C} (3)$$

Estimation of mutual information Î(X_i, X_j)
 Maximal Spanning Tree relative to weights Î(X_i, X_j)

Outline

Introduction

- EM with aggregation of spanning trees
- 5 Experiments simulations and flow cytometry data

同 ト イヨ ト イヨ ト

Effect of the missing variables

- Non measured variables
- Experimental conditions

Figure 2: Covariance matrix. WGCNA data - 200 genes

- **→** → **→**

Effect of the missing variables

Missing variables

• Missing variables involved in the process of interest but not measured

•
$$\mathcal{G} = (\{1, \ldots, p, p+1, \ldots, p+r\}, E), \ \mathcal{G}_m = (\{1, \ldots, p\}, E_m)$$

• Problem: inference of \mathcal{G}_m , \mathcal{G}

Apparition of cliques

O = Observed, H = Hidden

Effect of the missing variables

$$\mathcal{G}: K = \underbrace{\begin{pmatrix} K_{OO} & K_{OH} \\ K_{HO} & K_{HH} \end{pmatrix}}_{\text{arêtes de } E} \quad \Sigma = \begin{pmatrix} \Sigma_{OO} & \Sigma_{OH} \\ \Sigma_{HO} & \Sigma_{HH} \end{pmatrix}$$

$$\mathcal{G}_{\mathbf{m}} : K_m = \underbrace{K_{OO} - K_{OH} K_{HH}^{-1} K_{HO}}_{\text{arêtes de } E_m} \qquad \Sigma_m = \Sigma_{OO}$$
Robin, Ambroise, Robin
GGM Inference via latent tree aggregation

Consequences

• [Chandrasekaran et al., 2012] \mathcal{G}_m is not sparse

Consequences on interpretation + on quality of inference

Identifiability

General conditions in sparse plus low-rank model [Chandrasekaran et al., 2012]

9 Support of the low-rank matrix $K_{OH}K_{H}^{-1}K_{HO}$ not sparse

- a small number of hidden variables are connected to many observed variables
- K_O cannot have a low-rank structure
 - Typically Graph structures with a small number of central hidden variables (hubs)

直 ト イヨ ト イヨ ト

- maximal cliques of a tree are of size two.
- marginalizing a hidden variable produces a clique of size strictly more than two

Tree Structure Identifiability conditions [Choi et al., 2011]

- Every hidden variable has at least 3 children
- In the second second
- $\textcircled{O} \text{ No edge has weight 0 or } \infty \text{ (connected nodes are neither independent nor completely dependent)}$

伺 ト く ヨ ト く ヨ ト

Tree case

${\cal G}$ (red/black) tree

17 ▶

I ≡ →

Inference with sparsity penalty

Latent variable selection via convex optimization [Chandrasekaran et al., 2012]

 control the number of latent variables by penalizing the rank of the matrix L

EM algorithm with Glasso [Lauritzen and Meinshausen, 2012]

Parameters:
$$K = \begin{pmatrix} K_{OO} & K_{OH} \\ K_{HO} & K_{HH} \end{pmatrix}$$
, $\Sigma = \begin{pmatrix} \Sigma_{OO} & \Sigma_{OH} \\ \Sigma_{HO} & \Sigma_{HH} \end{pmatrix}$

E-step: $\mathbb{E}_{X_H | X_O; \mathcal{K}^t}[I_c(X_H, X_O)] = \mathbb{E}_{X_H | X_O; \mathcal{K}^t}[\log \det(\mathcal{K}^t) - tr(\mathcal{K}^t \Sigma)]$

M-step:
$$\mathcal{K}^{t+1} = \underset{\mathcal{K}}{\arg \max \log \det(\mathcal{K}^t) - \operatorname{tr}(\mathcal{K}^t \mathbb{E}_{X_H | X_O; \mathcal{K}^t}[\Sigma]) + \lambda \|\mathcal{K}_{OO}^t\|}_{\text{graphical lasso}}$$

Recursive Grouping [Choi et al., 2011]

- building of a latent tree from data in the gaussian case
- heuristic based on the so-called information distances

EM with Chow-Liu M step

- Idea of [Lauritzen and Meinshausen, 2012] replacing Glasso with Chow-liu
- Highly contrained structure

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- 2 Gaussian graphical models
- GGM with missing variables

4 EM with aggregation of spanning trees

Experiments - simulations and flow cytometry data

同 ト イヨ ト イヨ ト

Escaping the Tree constraint

Tree as a random variable [Schwaller and Robin, 2015]

 $\pi_{ij} = P(\{i, j\} \in E_T).$

The edges of T are drawn independently such that

$$P(T) \propto \prod_{\{i,j\}\in E_T} \pi_{ij}.$$
 (4)

Missing variable structure

We further assume the existence of a full symmetric positive definite matrix

$$K = \begin{pmatrix} K_O & K_{OH} \\ K_{HO} & K_H \end{pmatrix}$$

of which we want to infer the coefficients.

3

Escaping the Tree constraint

Mixture of trees

 (X_O, X_H) is a mixture of centered Gaussian distributions with respective precision matrices K_T :

$$(X_O, X_H) \sim \sum_{T \in \mathcal{T}} p(T) \mathcal{N}(X_0, X_H; 0, K_T^{-1})$$

Conditionally to a Tree

For every $T \in \mathcal{T}$ we define the matrix K_T such that for $(i,j) \in \{1,\ldots,p,p+1,\ldots,p+r\} \times \{1,\ldots,p,p+1,\ldots,p+r\}$ $K_{T,ij} = \begin{cases} K_{ij} & \text{if } \{i,j\} \in E_T \\ 0 & \text{otherwise} \end{cases}$.

• T and X_H are both latent variables.

イロン 不同 とくほう イロン

Some conditional distributions

Joint conditional distribution of T and X_H given X_O

$$P(T, X_H | X_O) = P(T | X_O) P(X_H | X_O, T).$$

with

 $P(X_H|X_O, T) = \mathcal{N}(\mu_{H|O,T}, K_{H|O,T})$ (5)

and

$$P(T|X_{O}) \propto P(T)P(X_{O}|T)$$

$$\propto \left(\prod_{\{i,j\}\in E_{T}} \pi_{ij}\right) \underbrace{\frac{\det(K_{T,M})^{\frac{n}{2}}}{(2\pi)^{\frac{np}{2}}}}_{(1)} \underbrace{\exp(-\frac{n}{2}\operatorname{tr}(K_{T,M}\Sigma_{O}))}_{(2)},$$
(6)
where $K_{T,M} = K_{T,O} - K_{T,OH}(K_{T,H})^{-1}K_{T,HO}$. Terms (1) and (2)

Robin, Ambroise, Robin GGM Inference via latent tree aggregation

can be expressed as products over the edges of T.

Maximizing the log-likelihood of the observed data log $p(X_O; K)$ with respect to the parameter K, alternating two steps:

E-step: Evaluation of all the conditional moments involved in the the conditional expectation of the so-called complete likelihood with the current value K^h of the parameter, namely:

$$\mathbb{E}_{X_H, T|X_O; K^h} \left[\log p(X_O, X_H, T; K) \right];$$
(7)

・ 戸 と ・ ヨ と ・ モ と …

M-step: Maximization of (7) with respect to K to update K^h into K^{h+1} .

E-step

The conditional expectation of the complete likelihood writes

$$\mathbb{E}_{T|X_O;K^h} \left(\mathbb{E}_{X_H|X_O,T} \log p(X_O, X_H, T; K) \right) \\ = \mathbb{E}_{T|X_O;K^h} \left(\log p(T) + \mathbb{E}_{X_H|X_O,T;K^h} \left[\log p(X_O, X_H|T; K) \right] \right).$$

Thanks to the tree structure of the graphical model, we have a simple form for the latter term:

$$\mathbb{E}_{X_H|X_O,T;K^h}\left[\log p(X_O,X_H|T;K)\right] = \sum_{\{i,j\}\in T} p_{ij}(K)$$

(人間) (人) (人) (人) (人) (人)

M-step

Combined with $p(T) \propto \prod_{\{i,j\} \in T} \pi_{ij}$ and with the conditional distribution of T, $p(T|X_O; K^h) \propto \prod_{\{i,j\} \in T} \gamma_{ij}$

$$\mathbb{E}_{X_{H},T|X_{O};K^{h}}\log p(X_{O},X_{H},T;K)$$

$$\propto \sum_{T} \left(\prod_{\{k,\ell\}\in T} \gamma_{k\ell}^{h}\right) \left[\sum_{\{i,j\}\in T}\log \pi_{ij} + p_{ij}(K)\right]$$

where the normalizing constant does depend on K^h but not on K. Hence, at the M-step we need to maximize wrt K

$$\sum_{\mathcal{T}} \left(\prod_{\{k,\ell\} \in \mathcal{T}} \gamma_{k\ell}^h \right) \left[\sum_{\{i,j\} \in \mathcal{T}} p_{ij}(\mathcal{K}) \right] = \sum_{i < j} A_{ij} p_{ij}(\mathcal{K})$$
(8)

where all $A_{ij} = \sum_{T:\{i,j\}\in T} \left(\prod_{\{k,\ell\}\in T} \gamma_{k\ell}^h\right)$ can be computed in $O((p+r)^3)$ using the matrix tree theorem.

Edge probability

We need to compute the probability for an edge to be part of the tree given X_O

$$\alpha_{kl} := P(\{k, l\} \in T | X_O) = 1 - \sum_{T : \{k, l\} \notin E_T} P(T | X_O).$$
(9)

This probability can be computed for all edges at a time in $O((p+r)^3)$ thanks to Matrix Tree Theorem

・ 同 ト ・ ヨ ト ・ ヨ ト

Model Selection

Maximum Log Likelihood

$$\log p(X_O; \widehat{K})$$

can be computed as

$$E[\log p(X_O, X_H, T)|X_O; \widehat{K}] + H(X_H, T|X_O, \widehat{K})$$

BIC

a standard BIC criterion can be defined as

$$BIC(r) = \log p(X_O; \widehat{K}) - \operatorname{pen}(r)$$

where

$$\operatorname{pen}(r) = \left(\frac{p(p+1)}{2} + rp + r\right) \frac{\log n}{2}.$$
 (10)

Model Selection (2)

ICLs

$$ICL_T(r) = \log p(X_O; \widehat{K}) - H(T|X_O) - \operatorname{pen}(r)$$

In situations where a reliable prediction of the hidden node X_H is of interest,

$$ICL_{T,X_H}(r) = \log p(X_O; \widehat{K}) - H(T, X_H | X_O) - \operatorname{pen}(r).$$

→ □ ▶ → 三 ▶ → 三 ▶

Outline

Introduction

- 2 Gaussian graphical models
- 3 GGM with missing variables
- 4 EM with aggregation of spanning trees

同 ト イヨ ト イヨ ト

Simulated data

- Graphs of size p = 50: tree, Erdös ($\pi = 0.1$), one Hub with Erdös
- Samples of size n = 200

Simulated data

(a) Erdös

Image: A image: A

э

э

Simulated data

(a) Erdös with Hub

(b) Erdös with Hub (marg.)

日 ト ・ ヨ ト ・

Real data

- Raf network (regulation of cellular proliferation)
- Flow cytometry
- p=11, n=100

(a) Full graph

(b) Marginal graph

Experiments

Compared methods

- Chow-Liu
- Recursive Grouping
- Glasso (Meinshausen & Bühlmann approximation)
- EM-Glasso
- EM-Chow-Liu
- EM-aggregation

Evaluation criterion

power =
$$\frac{TP}{FN + TP}$$
, FDR = $\frac{FP}{FP + TP}$

(4 同) (4 回) (4 回

Results

43 / 52

Results

44 / 52

Results

45 / 52

Model Selection for Erdös data

э

Flow cytometry

Figure 12: cytometryPrecision-Recall curves for graph inference results on flow cytometry data. Full graph (left) and Conditional graph (right)

- ● ● ●

Model Selection for Flow cytometry

number of hidden nodes

Figure 13: Existence of missing nodes

э

Perspectives

Improving on the initialization

• Hierarchical classification

Developing R package

Extension to

- Count data (non Gaussian) via Poisson Log-Normal
- Temporal data (Dependence between samples)
- Covariates

同下 イヨト イヨト

References

- Onureena Banerjee, Laurent El Ghaoui, and Alexandre d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. *Journal of Machine Learning Research*, 9(Mar):485–516, 2008.
- V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Latent variable graphical model selection via convex optimization. *The Annals of Statistics*, 40(4):1935–1967, 2012.
- M. J. Choi, V. Tan, A. Anandkumar, and A. S. Willsky. Learning latent tree graphical models. *The Journal of Machine Learning Research*, 12: 1771–1812, 2011.
- S. Lauritzen and N. Meinshausen. Discussion: Latent variable graphical model selection via convex optimization. *The Annals of Statistics*, 2012.
- L. Schwaller and S. Robin. Apprentissage de réseaux par agrégation bayésienne d'arbres couvrants. *Revue d'intelligence artificielle*, 2: 153–172, 2015.

Initialisation

Figure 14: Vraisemblance des observations pour chaque triplet possible

э

Initialisation

Figure 15: Classification hiérarchique au max du BIC