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Biological networks
Different kinds of biological interactions

Families of networks

protein-protein interactions,

metabolic pathways,

regulation network,

...

lexA

dinI

recF

rpD rpH

SsB

recA

umD

rpS

Regulation example : SOS Network E. Coli

 Let us focus on regulatory networks . . . and look for influence network
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Regulation

Gene expression is regulated (inhibited or activated)

by region (i.e., brain vs liver)

by development stage (i.e. fetal vs. adult)

by dynamic response to environment

by gene status (i.e. mutant vs. wild)

Lactose Operon,
Nobel price, Jacob,
Monod et Lwoff
(1965)
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Problem
Infer the interactions between genes from microarray data

Microarray gene expression data,
p genes, n experiments Which ones interact/co-express?

G0 G1

G2

G3

G4

G5

G6

G7

G8

G9

Major Issues

combinatory: 2
p(p−1)

2 possible graphs

dimension problem: n� p reduced to n ≈ p

Here, we reduce p to a number of fixed genes of interest
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Our ideas to tackle these issues

 Introduce prior taking the topology of the network into account for
better edge inference

G0 G1

G2

G3

G4

G5

G6

G7

G8

G9

Relying on biological constraints

1 few genes effectively interact (sparsity),

2 networks are organized (latent structure or Missing variables).
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Gaussian graphical models
General settings

The Gaussian model

Let X ∈ Rp be a random vector such as X ∼ N (0p,Σ);

let (X 1, . . . ,X n) be an i.i.d. size–n sample (e.g., microarray
experiments);

let X be a n × p matrix such as (X k)ᵀ is the kth row of X;

let K = (Kij)(i ,j)∈P2 := Σ−1 be the concentration matrix.

The graphical interpretation

Xi ⊥⊥ Xj |XP\{i ,j} ⇔ Kij = 0⇔ edge (i , j) /∈ network,

since rij |P\{i ,j} = −Kij/
√
KiiKjj .

 K describes the graph of conditional dependencies.
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Gaussian graphical models
Example

X =

X1

X2

X3

 , Σ =

 2 1 −1
1 1.5 −0.5
−1 −0.5 1.5



K = Σ−1 =

 1 −0.5 0.5
−0.5 1 0
0.5 0 1

 , G =

1

2 3

Underlying graph G = (V ,E ), V = {1, . . . , p}
The edge {i , j} is in E if Kij 6= 0

Inferring G ⇔ inferring the support of K .
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Inference of K

Estimate K from data

Maximum likelihood estimator:

K̂MLE = arg max
K

log det(K )− tr(KΣn)

= Σ−1
n

(1)

Hypothesis on the structure of the support of K

Penalized Log-likelihood

Tree hypothesis
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GGMs and regression
Network inference as p independent regression problems

One may use p different linear regressions

Xi = (X\i )
ᵀα + ε, where αj = −Kij/Kii ,

Meinshausen and Bülhman’s approach (06)

Solve p independent Lasso problems (`1–norm enforces sparsity):

α̂ = arg min
α

1

n

∥∥Xi − X\iα
∥∥2

2
+ ρ ‖α‖`1

,

where Xi is the ith column of X, and X\i is the full matrix with ith
column removed.

Major drawback: need of a symmetrization step to obtain a final estimate
of K.
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GGMs and Lasso
Solving p penalized regressions ⇔ maximize the penalized pseudo-likelihood

Consider the approximation P(X ) =
∏p

i=1 P(Xi |X\i ).

Proposition

The solution to

K̂ = arg max
K,Kij 6=Kji

log L̃(X; K) + ρ ‖K‖`1
, (2)

with

L̃(X; K) =

p∑
i=1

( n∑
k=1

logP(X k
i |X k

\i ; Ki )
)
,

shares the same null-entries as the solution of the p independent penalized
regressions.

 Those p terms are not independent, as K is not diagonal !
 Still requires the post-symmetrization
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GGMs and penalized likelihood

The penalized likelihood of the Gaussian observations [Banerjee et al.,
2008]

Use a penalty term

n

2
(log det(K)− Tr(SnK))− ρ‖K‖`1 ,

where Sn is the empirical covariance matrix.

Natural generalization

Use different penalty parameters for different coefficients

n

2
(log det(K)− Tr(SnK))− ‖ρZ(K)‖`1 ,

where ρZ(K) = (ρZi ,Zj
(Kij))i ,j is a penalty function depending on an

unknown underlying structure Z.
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GGMs and Tree structure

The graph is a tree

Chow-Liu algorithm (1968)
Input Σn,
Output T̂CL, K̂CL

T̂CL = arg max
T arbre

log(P(X ;T ))︸ ︷︷ ︸∑
{i,j}∈ET

I (Xi ,Xj )+C
(3)

1 Estimation of mutual information Î (Xi ,Xj)
2 Maximal Spanning Tree relative to weights

Î (Xi ,Xj)
Figure 1: Tree
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Effect of the missing variables

Non measured variables

Experimental conditions

Figure 2: Covariance matrix. WGCNA data - 200 genes

18 / 52 Robin, Ambroise, Robin GGM Inference via latent tree aggregation



Effect of the missing variables

Missing variables

Missing variables involved in the process of interest but not measured

G = ({1, . . . , p, p + 1, . . . , p + r},E ), Gm = ({1, . . . , p},Em)

Problem: inference of Gm, G

(
XO

XH

)
=


X1

X2

X3

X4

X5

 :

5

2
4

3

1

marginalisation
−−−−−−−−−−→

2 3

1

Apparition of cliques

O = Observed, H = Hidden
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Effect of the missing variables

5

2
4

3

1
marginalization
−−−−−−−−−−→

2 3

1

G : K =

(
KOO KOH

KHO KHH

)
︸ ︷︷ ︸

arêtes de E

Σ =

(
ΣOO ΣOH

ΣHO ΣHH

)

Gm : Km = KOO − KOHK
−1
HHKHO︸ ︷︷ ︸

arêtes de Em

Σm = ΣOO

O = Observed, H = Hidden
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Consequences

[Chandrasekaran et al., 2012] Gm is not sparse

(a) Full graph (b) Marginal graph

Consequences on interpretation + on quality of inference
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Identifiability

General conditions in sparse plus low-rank model [Chandrasekaran
et al., 2012]

1 Support of the low-rank matrix KOHK
−1
H KHO not sparse

a small number of hidden variables are connected to many observed
variables

2 KO cannot have a low-rank structure

Typically Graph structures with a small number of central hidden
variables (hubs)
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Identifiability

maximal cliques of a tree are of size two.

marginalizing a hidden variable produces a clique of size strictly more
than two

Tree Structure Identifiability conditions [Choi et al., 2011]

1 Every hidden variable has at least 3 children

2 No edge between two hidden variables

3 No edge has weight 0 or ∞ (connected nodes are neither independent
nor completely dependent)
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Tree case

G (red/black) tree

1

3

2

4

5

6

h

7

8

9
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Inference with sparsity penalty

Latent variable selection via convex optimization [Chandrasekaran
et al., 2012]

control the number of latent variables by penalizing the rank of the
matrix L

EM algorithm with Glasso [Lauritzen and Meinshausen, 2012]

Parameters: K =

(
KOO KOH

KHO KHH

)
, Σ =

(
ΣOO ΣOH

ΣHO ΣHH

)

E-step: EXH |XO ;K t [lc(XH ,XO)] = EXH |XO ;K t [log det(K t)− tr(K tΣ)]

M-step: K t+1 = arg max
K

log det(K t)− tr(K tEXH |XO ;K t [Σ]) + λ
∥∥K t

OO

∥∥︸ ︷︷ ︸
graphical lasso
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Inference with tree assumption

Recursive Grouping [Choi et al., 2011]

building of a latent tree from data in the gaussian case

heuristic based on the so-called information distances

EM with Chow-Liu M step

Idea of [Lauritzen and Meinshausen, 2012] replacing Glasso with
Chow-liu

Highly contrained structure
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Escaping the Tree constraint

Tree as a random variable [Schwaller and Robin, 2015]

πij = P({i , j} ∈ ET ).

The edges of T are drawn independently such that

P(T ) ∝
∏

{i ,j}∈ET

πij . (4)

Missing variable structure

We further assume the existence of a full symmetric positive definite matrix

K =

(
KO KOH

KHO KH

)
of which we want to infer the coefficients.
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Escaping the Tree constraint

Mixture of trees

(XO ,XH) is a mixture of centered Gaussian distributions with respective
precision matrices KT :

(XO ,XH) ∼
∑
T∈T

p(T )N (X0,XH ; 0,K−1
T )

Conditionally to a Tree

For every T ∈ T we define the matrix KT such that for
(i , j) ∈ {1, . . . , p, p + 1, . . . , p + r} × {1, . . . , p, p + 1, . . . , p + r}

KT ,ij =

{
Kij if {i , j} ∈ ET

0 otherwise
.

T and XH are both latent variables.
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Some conditional distributions

Joint conditional distribution of T and XH given XO

P(T ,XH |XO) = P(T |XO)P(XH |XO ,T ).

with

P(XH |XO ,T ) = N (µH|O,T ,KH|O,T ) (5)

and

P(T |XO) ∝ P(T )P(XO |T )

∝

 ∏
{i ,j}∈ET

πij

 det(KT ,M)
n
2

(2π)
np
2︸ ︷︷ ︸

(1)

exp(−n

2
tr(KT ,MΣO))︸ ︷︷ ︸

(2)

,

(6)
where KT ,M = KT ,O − KT ,OH(KT ,H)−1KT ,HO . Terms (1) and (2)
can be expressed as products over the edges of T .
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EM algorithm

Maximizing the log-likelihood of the observed data log p(XO ;K ) with
respect to the parameter K , alternating two steps:

E-step: Evaluation of all the conditional moments involved in the the
conditional expectation of the so-called complete likelihood
with the current value Kh of the parameter, namely:

EXH ,T |XO ;Kh [log p(XO ,XH ,T ;K )] ; (7)

M-step: Maximization of (7) with respect to K to update Kh into
Kh+1.

31 / 52 Robin, Ambroise, Robin GGM Inference via latent tree aggregation



E-step

The conditional expectation of the complete likelihood writes

ET |XO ;Kh

(
EXH |XO ,T log p(XO ,XH ,T ;K )

)
= ET |XO ;Kh

(
log p(T ) + EXH |XO ,T ;Kh [log p(XO ,XH |T ;K )]

)
.

Thanks to the tree structure of the graphical model, we have a simple
form for the latter term:

EXH |XO ,T ;Kh [log p(XO ,XH |T ;K )] =
∑
{i ,j}∈T

pij(K )
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M-step

Combined with p(T ) ∝
∏
{i ,j}∈T πij and with the conditional distribution

of T , p(T |XO ;Kh) ∝
∏
{i ,j}∈T γij

EXH ,T |XO ;Kh log p(XO ,XH ,T ;K )

∝
∑
T

 ∏
{k,`}∈T

γhk`

 ∑
{i ,j}∈T

log πij + pij(K )


where the normalizing constant does depend on Kh but not on K . Hence,
at the M-step we need to maximize wrt K

∑
T

 ∏
{k,`}∈T

γhk`

 ∑
{i ,j}∈T

pij(K )

 =
∑
i<j

Aij pij(K ) (8)

where all Aij =
∑

T :{i ,j}∈T

(∏
{k,`}∈T γ

h
k`

)
can be computed in

O((p + r)3) using the matrix tree theorem.
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Edge probability

Edge probability

We need to compute the probability for an edge to be part of the tree
given XO

αkl := P({k, l} ∈ T |XO) = 1−
∑

T :{k,l}/∈ET

P(T |XO). (9)

This probability can be computed for all edges at a time in O((p + r)3)
thanks to Matrix Tree Theorem
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Model Selection

Maximum Log Likelihood

log p(XO ; K̂ )

can be computed as

E [log p(XO ,XH ,T )|XO ; K̂ ] + H(XH ,T |XO , K̂ )

.

BIC

a standard BIC criterion can be defined as

BIC (r) = log p(XO ; K̂ )− pen(r)

where

pen(r) =

(
p(p + 1)

2
+ rp + r

)
log n

2
. (10)
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Model Selection (2)

ICLs

ICLT (r) = log p(XO ; K̂ )− H(T |XO)− pen(r)

In situations where a reliable prediction of the hidden node XH is of
interest,

ICLT ,XH
(r) = log p(XO ; K̂ )− H(T ,XH |XO)− pen(r).
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Simulated data

Graphs of size p = 50: tree, Erdös (π = 0.1), one Hub with Erdös

Samples of size n = 200

(a) Tree (b) Tree (marg.)
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Simulated data

(a) Erdös (b) Erdös (marg.)
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Simulated data
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Real data

Raf network (regulation of cellular proliferation)

Flow cytometry

p=11, n=100

(a) Full graph (b) Marginal graph
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Experiments

Compared methods

Chow-Liu

Recursive Grouping

Glasso (Meinshausen & Bühlmann approximation)

EM-Glasso

EM-Chow-Liu

EM-aggregation

Evaluation criterion

power =
TP

FN + TP
, FDR =

FP

FP + TP
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Results

+

+

+

+

+

+
+

+
+

+
+

+ + ++ ++++
+

+
+

+++++
++

++
+
+
+
+

+

********
*

*
*

*

*

*

*

*

*

*
**

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75

(a) Full graph estimation with
the Hub Erdös Data

●

Chow−Liu
MB
RG
EM−MB
EM−Chow−Liu
EM−trees

+

+

+

+

+

+
+ + + + + + +++++++++ +++++++

+++++
+++

*********
*

*

*

*

*

*

*

*

*
**

●●●
●●●●●

●
●

●●
●

●
●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(b) Conditional graph estimation
with the Hub Erdös Data

43 / 52 Robin, Ambroise, Robin GGM Inference via latent tree aggregation



Results

+

+

+

+

+

+ + + + + + +++++++++
+

+++
+
++
++
+
+
+++++

**********
*

*
*

*

*

*

*

*

*
*0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(a) Full graph estimation with
the Tree Data

●

Chow−Liu
MB
RG
EM−MB
EM−Chow−Liu
EM−trees

+

+

+

+

+

+ + + + + + + +++++++++ +++++
+++
+++++
++

***********
*

*

*

*

*

*

*

*
*

●●●
●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(b) Conditional graph estimation
with the Tree Data

44 / 52 Robin, Ambroise, Robin GGM Inference via latent tree aggregation



Results

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+
+ + ++

+
+

+ + +
++++++

++
+++

+

*******
*

*
*

*

*

*

*

*

*

*
*

* *0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8

(a) Full graph estimation with
the Erdös Data

●

Chow−Liu
MB
RG
EM−MB
EM−Chow−Liu
EM−trees

+

+

+

+

+

+

+

+
+
+

+
+

+
+

+
+ + + +

+
+

+ + +
+ +++++

++
+++

+

*******
*

*
*

*

*

*

*

*

*

*
*
**

●●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(b) Conditional graph estimation
with the Erdös Data

45 / 52 Robin, Ambroise, Robin GGM Inference via latent tree aggregation



Model Selection for Erdös data
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Figure 11: Existence of missing nodes
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Flow cytometry
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Figure 12: cytometryPrecision-Recall curves for graph inference results on flow cy-
tometry data. Full graph (left) and Conditional graph (right)
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Model Selection for Flow cytometry
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Figure 13: Existence of missing nodes
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Perspectives

Improving on the initialization

Hierarchical classification

Developing R package

Extension to

Count data (non Gaussian) via Poisson Log-Normal

Temporal data (Dependence between samples)

Covariates
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Initialisation

Figure 14: Vraisemblance des observations pour chaque triplet possible
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Initialisation

Figure 15: Classification hiérarchique au max du BIC
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