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Introduction Biological context

Gene (co-)expression

@ Transcriptome data: main source of 'omic information available for
living organisms
e Microarrays (~1995 - )
o High-throughput sequencing (HTS): RNA-seq (~2008 - )

e Comparison of two conditions (hypothesis tests) — Differential
expression analysis

Co-expression (clustering) analysis
@ Study gene expression behavior across several conditions

@ Co-expressed genes may be involved in similar biological process(es)
= study genes without known or predicted function (orphan genes)
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Co-expression analysis with RNA-seq data
High-throughput transcriptome sequencing data (RNA-seq)

Total RNA
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@ Reads aligned or directly mapped to the genome to get counts per
genomic feature (discrete data) = digital measures of gene expression
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Co-expression analysis with RNA-seq data
RNA-seq data, continued

Some statistical challenges of RNA-seq data analysis

@ Discrete, non-negative, and skewed data with very large dynamic
range (up to 5+ orders of magnitude)

@ Sequencing depth (= “library size”) varies among experiments, and
other technical biases...

@ Counts correlated with gene length

Gene El E2 E3
Sample 1 13CDNAT3 4 0 [}
== = _ 5___=__ _=_= _ L2BP1 19 18 20
I - AZM 2724 2209 13
Gene 1 Gene 2 AAGALT 0 0 a8
ARMLS 57 29 224
Sample 2
=_ = e = - - ARACS 1504 129 4
ARDACL1I 3 13 239
Gene 1 Gene 2 [oea]

To date, most methodological developments are for experimental design,
normalization, and differential analysis...
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Introduction Co-expression analysis with RNA-seq data

Some notation

Notation

Let Yjj, be the count (expression measure) for gene i in replicate £ of
condition j, with corresponding observed value yj;.

@ Let sj; be the library size in replicate ¢ of condition j

o Lety = (yjj¢) be the n x 3 . L; matrix of counts for all genes and
variables and y; the ith row of the matrix
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Introduction Finite mixture models

Finite mixture models

Model-based clustering
@ Rigourous framework for parameter estimation and model selection

@ Output: each gene assigned a probability of cluster membership

Assume data y come from K distinct subpopulations, each modeled
separately:

f(y|K, Wk) HZkak yilOk)

i=1 k=1

4] \UK = (7T1,...77TK7170/)/

o w=(m,...,7k) are the mixing proportions, where fo:l me =1
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Poisson mixture model

Finite mixture models for RNA-seq data

n K
FlylK, Wie) = T D mfi(yilOx)

i=1 k=1

e For microarray data, we often assume y;|k ~ MVN(gey, X)...
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Poisson mixture model

Finite mixture models for RNA-seq data

n K
FyIK, Wi) =T D mfi(yilf)

i=1 k=1

e For microarray data, we often assume y;|k ~ MVN(gey, X)...

@ For RNA-seq data, we need to choose the family and
parameterization of f,(-). One possibility:

J L
yilk ~ [T TTP(ielmier)

j=1¢=1
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Poisson mixture model

Finite mixture models for RNA-seq data

n K

FlylK, Wie) = T D mfi(yilOx)

i=1 k=1

e For microarray data, we often assume y;|k ~ MVN(gey, X)...

@ For RNA-seq data, we need to choose the family and
parameterization of f,(-). One possibility:

J L
yilk ~ [T TTP(ielmier)

j=1¢=1

Question: How to parameterize the mean fijp to obtain meaningful
clusters of co-expressed genes?
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RIETT
Which genes should be clustered?
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RIETT
Which genes should be clustered?
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RIETT
Which genes should be clustered?
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Poisson mixture model Parameterization

Poisson mixture model for RNA-seq data

Consider yjj¢|k ~ Poisson(yjie|pijex), where
Hijek = WiSjeAjk

@ w; : overall expression level of gene i (= y;..)
@ sj; : normalized library size?

® Ar = (Ajx) : parameters that define profiles of genes in each cluster?

“Estimated from data using standard techniques and considered to be fixed
bFor identifiability of model, we assume >0 Aiksie = 1 for all k
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Poisson mixture model Parameterization

Poisson mixture model for RNA-seq data

Consider yjj¢|k ~ Poisson(yjie|pijex), where
Hijek = WiSjeAjk

@ w; : overall expression level of gene i (= y;..)
@ sj; : normalized library size?

® Ar = (Ajx) : parameters that define profiles of genes in each cluster?

“Estimated from data using standard techniques and considered to be fixed
bFor identifiability of model, we assume >0 Aiksie = 1 for all k

@ Genes assigned to the same cluster if they share the same profile of
variation around their mean count across all conditions
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Poisson mixture model Implementation

Parameter estimation

The log likelihood is

L(Wkly, K) = log [H fyilK, Wk)
i=1

n K
= log [ZM“Y:‘WO] ,
=1 Lk=1

where 0k = (W,', )\1k, ey )\dK)/
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Poisson mixture model Implementation

Parameter estimation

The log likelihood is

n K
= log lzﬂkf(y,'|9k)] ,
=1 Lk=1

L(Wkly, K) = log [H fyilK, Wk)
i=1

where 0k = (W,',)\lk, .. -7)\dK)/

e Estimation approach (EM): mixture parameters are estimated for a
given model K by computing the maximum likelihood estimate
(Dempster et al. 1977)

o Note: the EM algorithm is sensitive to initialization, so we make use
of a splitting small-EM initialization
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Implementation
Classification by the MAP rule

“Maximum a posteriori” (MAP) rule:

@ Each individual is attributed to the cluster for which it has the largest
conditional probability of membership given the estimated parameters:

i (yilOk)
Tik(g) = K
> o1 mefe(yil0e)

o MAP rule with f:

5 {1 if 7k (éK) > Tip (éK) Ve £ k

0 otherwise
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Poisson mixture model Model selection

Model selection

@ Collection of models (Sk)kex indexed by number of clusters K
@ In each model Sk, parameter estimation via MLE: \TJK

© Selection of the “best” model K using a penalized criterion:

N y .

K = arg min —72|og f(yilK, Vi) + penalty(K)
Kek n-=

= Asymptotic penalized criteria include Bayesian Information

Criterion (BIC) and Integrated Completed Likelihood (ICL)
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Poisson mixture model Model selection

Slope heuristics for model selection (Birgé and Massart, 2006)

e Non-asymptotic framework: construct a penalized criterion! such that
the selected model has a risk close to the oracle model

@ Optimal penalty for model of dimension D:

D
penaltyopt ~ 2&;

Theoretically validated in Gaussian framework, but encouraging applications in other
contexts (Baudry et al., 2012)
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Poisson mixture model Model selection

Slope heuristics for model selection (Birgé and Massart, 2006)

e Non-asymptotic framework: construct a penalized criterion! such that
the selected model has a risk close to the oracle model

@ Optimal penalty for model of dimension D:
D
penaltyopt ~ 2/@;

In large dimensions:
@ Linear behavior of loglikelihood with respect to model dimension D

@ = Estimation of slope to calibrate & in a data-driven manner
(Data-Driven Slope Estimation = DDSE), capushe R package

Theoretically validated in Gaussian framework, but encouraging applications in other
contexts (Baudry et al., 2012)
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el
Slope heuristics in practice for RNA-seq

andrea.rau@jouy.inra.fr
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S
HTSCluster R package

> PMM <- PoisMixClusWrapper(y=data, gmin=1, gmax=35,
conds=conds, split.init=TRUE, norm="TMM")

>

> summary (PMM)

sk sk sk sk ok ok ok o o o KoK oK oK ok ok o o o K ok ok ok ok ok o o o kK ok ok ok ok o o ok K oK oK ok ok ok o o kK ok

Selected number of clusters via ICL = 10

Selected number of clusters via BIC = 30

Selected number of clusters via Djump = 15

Selected number of clusters via DDSE = 14

ok KoK oK oK ok ok o K KKK oK oK oK o o o K oK oK oK ok ok o o K K K oK oK ok ok o o KK oK oK ok ok o o KK oK

>

> summary (PMM$DDSE.results)

ok KoK oK oK ok o o K K KoK oK oK oK o o o KoK oK oK ok ok o o K K K oK oK ok oK o o o KK oK oK ok ok o o K KoK

Number of clusters = 14

Model selection via DDSE

ok KoK oK oK ok o o o KK oK oK oK oK o o o K oK oK oK ok ok o o o K K oK oK ok ok o o o KK oK oK ok ok o o KK oK

Cluster sizes:

Cluster 1 Cluster 2 Cluster 3

540 192 235
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RNA-seq application Embryonic fly data

Real data analysis: Embryonic fly development

@ modENCODE project to provide functional annotation of Drosophila
(Graveley et al., 2011)

@ Expression dynamics over 27 distinct stages of development during
life cycle studied with RNA-seq

@ 12 embryonic samples (collected at 2-hr intervals over 24 hrs) for
13,164 genes downloaded from ReCount database (Frazee et al.,
2011)
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RNA-seq application Embryonic fly data

Real data analysis: Embryonic fly development

@ modENCODE project to provide functional annotation of Drosophila
(Graveley et al., 2011)

@ Expression dynamics over 27 distinct stages of development during
life cycle studied with RNA-seq

@ 12 embryonic samples (collected at 2-hr intervals over 24 hrs) for
13,164 genes downloaded from ReCount database (Frazee et al.,
2011)

@ 3 independent runs, used HTSCluster to fit Poisson mixture models

for K € {1,...,60,65,...,100,110,...,130}

@ Using slope heuristics, selected model is K =48
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2 A
HTSCluster model diagnostics
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Embryonic fly data

RNA-seq application

HTSCluster model diagnostics
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2 A
HTSCluster model diagnostics
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results

W Embryos 22-24hr
W Embryos 20-22hr
= Embryos 18-20hr
@ Embryos 16-18hr

Ajes;.

Cluster

e Functional enrichment analysis: 33 of 48 clusters associated with at
least one Gene Ontology Biological Process term (e.g., cluster 6
associated with muscle attachment)
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HTSCluster for clustering count-based RNA-seq profiles

@ Interpretable parameterization for RNA-seq co-expression analyses,
straightforward parameter estimation, and a sound mechanism for
model selection

@ Performs well on real and simulated data compared to other
approaches especially when the number of clusters is unknown

@ HTSCluster (v2.0.4): R package on CRAN

Co-expression analysis of high-throughput transcriptome
sequencing data with Poisson mixture models

Andrea Rau ?; Cathy Maugis-Rabusseau ?, Marie-Laure
Martin-Magniette’>¢7 and Gilles Celeux ®
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T
Some limits (opportunities!) for HTSCluster

@ Computational time can be a drawback: a full collection of models is
estimated to allow for selection of a single “best” model, splitting
small-EM initialization prevents parallelization...

@ Samples are currently assumed to be conditionally independent given
the cluster

o Conditions are currently assumed to be a single multi-level factor:
how to correctly account for more complex experimental designs?
(e.g. factorial, time series)

@ Is a Poisson mixture model the most appropriate choice for RNA-seq
data in practice? ...
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Discussion Future work

Future work: Model comparisons for co-expression

Is it better to model the raw counts y;; using a Poisson distribution or
appropriately transformed counts t(y;;) using a Gaussian distribution??

f(yilK,0k) = ZﬂkHP YijlOk)

_VS_
K

g(t(y) K k) =D me®(t(yi)lex, )
k=1

2Ph.D. work of Mélina Gallopin
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Discussion Future work

Future work: Model comparisons for co-expression

Is it better to model the raw counts y;; using a Poisson distribution or
appropriately transformed counts t(y;;) using a Gaussian distribution??

f(yilK,0k) = ZﬁkHP YijlOk)

_VS_
K

g(t(y) K k) =D me®(t(yi)lex, )
k=1

For example,

t(y;) = log <yu/y1+1>

m,-—|—1

2Ph.D. work of Mélina Gallopin
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Discussion Future work

Future work: Model comparisons for RNA-seq
co-expression

BIC model selection criterion enables an objective comparison:
o BIC,(K;y) =31 logf(yi K,0k) — % logn
o BICg(K:y) = 311 log g(t(yi)i K. iik) + 327 log t'(yi) — 5 logn
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Discussion Future work

Future work: Model comparisons for RNA-seq
co-expression

BIC model selection criterion enables an objective comparison:
o BIC,(K;y) =31 logf(yi K,0k) — % logn
o BICg(K:y) = 311 log g(t(yi)i K. iik) + 327 log t'(yi) — 5 logn

200000 -150000
L L

250000
L

Left: Sultan et al. (2008). Right: Mach et al. (2014)

Further comparisons of transformations / models in progress...
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Thank you!

In collaboration with...

o Gilles Celeux (Inria Saclay - Tle-de-France)

e Cathy Maugis-Rabusseau (INSA / IMT Toulouse)

@ Marie-Laure Martin-Magniette (AgroParisTech / INRA URGV)
@ Panos Papastamoulis (University of Manchester)
°

Mélina Gallopin (current Ph.D. student)



Estimation of finite mixture models

@ A finite mixture model may be seen as an incomplete data
structure model

@ The complete data are

=(y,z) = (x1,---,%xn) = ((y1,---,¥n), (21, -.,2n))

where the missing data are z = (z1,...,2,) = (zi)
e z; component of i, where zy = 1 if / arises from group k and 0
otherwise
o z defines a partition P = (Py,..., Pk) of the observed data y with
Px = {ilzic = 1}

@ Expected completed likelihood:

L(Vk;y,z) Zzzlk {log 7k + log fic(y; €)} + A" (Zﬂk — 1>

i=1 k=1

where \™ is the Lagrange multiplier for the constraint on &



Estimation: EM algorithm (Dempster et al., 1977)

E-step Compute the conditional probabilities:

(5) £y 1)
T (g(kb)>: T f(yil6y”)
S F(yil0%))

M-step Update W, to maximize the expected value of the completed
likelihood by weighting observation i for cluster k with

Tik (99):
b+1 Z T ( )
W = yi.
o S ()
S I (9(kb)) Yi..




Splitting initialization (Papastamoulis et al., 2014)

for K < 2 to gmaz do
— Calculate per-class entropy ex = — > ;. log ff,f_l for model with (K — 1)
clusters
— Select cluster k* = arg max,, e to be split
for i < 1 to init.runs do
— Randomly split the observations in cluster k* into two clusters
— Calculate corresponding A(0):K and 7(0:1).K
— Update values of A(%):-K and 7(%):-K via EM algorithm with
init.iter iterations
— Calculate the log-likelihood LK = [(X(@:/).K #(0.1).K)

end
Let i* = arg max; L)X Fix new initial values (0K = X(0:").K and
(0K — 2(0,i").K

end



Penalized criteria for model selection: BIC (Schwarz, 1978)
@ Maximization of integrated likelihood:

m = argmin —f(y|m)
meM

where

f(y|m) = /e F(y[6, mN(6]m)do

e Asymptotic approximation (where D, = (m — 1) + m x J is the
dimension of Sp,):

In(£(ylm)) =~ ~L{ylAm) + 2In(n)

. D
= nyn(ém) + 7m|n(n)
@ Bayesian information criterion (BIC):

P - Pay . D
m = argmin {v,(8m) + peng,c(m)} with peng,c(m) = 2—m|n(n)
meM n



Penalized criteria for model selection: ICL (Biernacki et al., 2000)

@ Alternative based on maximization of integrated completed likelihood:

M = arg min —f(y, z|m)
meM

where

f(y,z]m)_/e f(y,z|0, m)[(0|m)dé

@ BIC-like asymptotic approximation for Integrated Completed
Likelihood (ICL):

1 4 D
M = arg min{—EL(Hm]y,i) + 2—,";|n(n)}

meM

= argmin {7,(5m) + peng;c(m) + Ent(m)}
meM

where Ent(m) = =133, 2 In Tik(Om)
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Behavior of BIC and ICL in practice for RNA-seq data
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Description of competing models

o

o

o

PoisL (Cai et al., 2004): K-means type algorithm using Poisson
loglinear model

e Equivalent to HTSCluster when equal library sizes, unreplicated data,
equiprobable Poisson mixtures, and parameter estimation via the
Classification EM (CEM) algorithm

Witten (2011): hierarchical clustering of dissimilarity measure based
on a Poisosn loglinear model

o Originally intended to cluster samples

Si et al. (2014): model-based hierarchical algorithm using Poisson
and negative binomial models

Classic K-means algorithm on expression profiles (yji¢/yi..)

Model selection not addressed by any of the above =- Calirski and
Harabasz index (1974) used for comparison



Simulation procedure (based on fly and human data)

For each setting (fly and human), 50 individual datasets:

o K fixed to 15, true experimental design used

o All parameters (Ajx), (sj¢), and (w;) fixed to estimated values from
real data analysis

@ n = 3000 genes randomly sampled from fly or human data, weighted
by their maximum conditional probability

@ For each selected gene, we sample from the appropriate Poisson
distribution:

Yiir ~ P(puijin)

where Hijlk = Wisjl)\jk if 2i/< =1.



Simulation results

o All models fit for K €1,...,40

@ Model selection via the slope heuristics (HTSCluster, PoisL) or
CH-index (Si-Pois, Si-NB, Witten)

@ Models compared using the adjusted Rand Index (ARI, Hubert &
Arabie 1985)

@ For comparison, also consider the oracle ARI (based on assignment of
observations to clusters using the true parameter values)



Simulation results

Table: Mean (sd) ARI for simulations with parameters based on the fly and human liver.

Method Model selection  Fly Human
capushe 0.93 (0.05) 0.61 (0.02)
HISCluster ¢ K 0.84 (0.09)  0.60 (0.02)
PoisL. capushe 0.79 (0.15)  0.53 (0.05)
True K 0.82 (0.05)  0.53 (0.04)
. CH index 0.15 (0.07)  0.11 (0.03)
Witten True K 0.67 (0.09)  0.39 (0.04)
SiPoic CH index 0.26 (0.17)  0.48 (0.04)
True K 0.95 (0.02) 0.61 (0.02)
SLNB CH index 0.23 (0.16)  0.47 (0.04)
: True K 0.94 (0.02) 0.60 (0.02)
K-means True K 0.79 (0.08)  0.42 (0.02)

Oracle True K 0.95 (0.01) 0.63 (0.01)
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