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Introduction Biological context

Gene (co-)expression

Transcriptome data: main source of ’omic information available for
living organisms

Microarrays (∼1995 - )
High-throughput sequencing (HTS): RNA-seq (∼2008 - )

Comparison of two conditions (hypothesis tests) → Differential
expression analysis

Co-expression (clustering) analysis

Study gene expression behavior across several conditions

Co-expressed genes may be involved in similar biological process(es)
⇒ study genes without known or predicted function (orphan genes)
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Introduction Co-expression analysis with RNA-seq data

High-throughput transcriptome sequencing data (RNA-seq)

Reads aligned or directly mapped to the genome to get counts per
genomic feature (discrete data) ⇒ digital measures of gene expression
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Introduction Co-expression analysis with RNA-seq data

RNA-seq data, continued

Some statistical challenges of RNA-seq data analysis

Discrete, non-negative, and skewed data with very large dynamic
range (up to 5+ orders of magnitude)

Sequencing depth (= “library size”) varies among experiments, and
other technical biases...

Counts correlated with gene length

Gene 1 Gene 2

Gene 1 Gene 2

Sample 1

Sample 2

To date, most methodological developments are for experimental design,
normalization, and differential analysis...
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Introduction Co-expression analysis with RNA-seq data

Some notation

Notation

Let Yij` be the count (expression measure) for gene i in replicate ` of
condition j , with corresponding observed value yij`.

Let sj` be the library size in replicate ` of condition j

Let y = (yij`) be the n ×
∑

j Lj matrix of counts for all genes and
variables and yi the ith row of the matrix
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Introduction Finite mixture models

Finite mixture models

Model-based clustering

Rigourous framework for parameter estimation and model selection

Output: each gene assigned a probability of cluster membership

Assume data y come from K distinct subpopulations, each modeled
separately:

f (y|K ,ΨK ) =
n∏

i=1

K∑
k=1

πk fk(yi |θk)

ΨK = (π1, . . . , πK−1,θ
′)′

π = (π1, . . . , πK )′ are the mixing proportions, where
∑K

k=1 πk = 1
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Poisson mixture model

Finite mixture models for RNA-seq data

f (y|K ,ΨK ) =
n∏

i=1

K∑
k=1

πk fk(yi |θk)

For microarray data, we often assume yi |k ∼ MVN(µk ,Σk)...

For RNA-seq data, we need to choose the family and
parameterization of fk(·). One possibility:

yi |k ∼
J∏

j=1

Lj∏
`=1

P(yij`|µij`k)

Question: How to parameterize the mean µij`k to obtain meaningful
clusters of co-expressed genes?
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Poisson mixture model Parameterization

Which genes should be clustered?
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Poisson mixture model Parameterization

Poisson mixture model for RNA-seq data

Consider yij`|k ∼ Poisson(yij`|µij`k), where

µij`k = wi sj`λjk

wi : overall expression level of gene i (= yi ··)

sj` : normalized library sizea

λk = (λjk) : parameters that define profiles of genes in each clusterb

aEstimated from data using standard techniques and considered to be fixed
bFor identifiability of model, we assume

∑
j,` λjksj` = 1 for all k

Genes assigned to the same cluster if they share the same profile of
variation around their mean count across all conditions
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Poisson mixture model Implementation

Parameter estimation

The log likelihood is

L(ΨK |y,K ) = log

[
n∏

i=1

f (yi |K ,ΨK )

]
=

n∑
i=1

log

[
K∑

k=1

πk f (yi |θk)

]
,

where θk = (wi , λ1k , . . . , λdK )′

Estimation approach (EM): mixture parameters are estimated for a
given model K by computing the maximum likelihood estimate
(Dempster et al. 1977) Details...

Note: the EM algorithm is sensitive to initialization, so we make use
of a splitting small-EM initialization Details...
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Poisson mixture model Implementation

Classification by the MAP rule

“Maximum a posteriori” (MAP) rule:

Each individual is attributed to the cluster for which it has the largest
conditional probability of membership given the estimated parameters:

τik(θ) =
πk fk(yi |θk)∑K
`=1 π`f`(yi |θ`)

MAP rule with θ̂K :

ẑik =

{
1 if τik

(
θ̂K

)
> τi`

(
θ̂K

)
∀` 6= k

0 otherwise
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Poisson mixture model Model selection

Model selection

1 Collection of models (SK )K∈K indexed by number of clusters K

2 In each model SK , parameter estimation via MLE: Ψ̂K

3 Selection of the “best” model K̂ using a penalized criterion:

K̂ = arg min
K∈K

{
−1

n

n∑
i=1

log f (yi |K , Ψ̂K ) + penalty(K )

}

⇒ Asymptotic penalized criteria include Bayesian Information
Criterion (BIC) and Integrated Completed Likelihood (ICL) Details...
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Poisson mixture model Model selection

Slope heuristics for model selection (Birgé and Massart, 2006)

Non-asymptotic framework: construct a penalized criterion1 such that
the selected model has a risk close to the oracle model

Optimal penalty for model of dimension D:

penaltyopt ≈ 2κ
D

n

In large dimensions:

Linear behavior of loglikelihood with respect to model dimension D

⇒ Estimation of slope to calibrate κ̂ in a data-driven manner
(Data-Driven Slope Estimation = DDSE), capushe R package

1Theoretically validated in Gaussian framework, but encouraging applications in other
contexts (Baudry et al., 2012)
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Poisson mixture model Model selection

Slope heuristics in practice for RNA-seq
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Poisson mixture model HTSCluster

HTSCluster R package

> PMM <- PoisMixClusWrapper(y=data, gmin=1, gmax=35,

conds=conds, split.init=TRUE, norm="TMM")

>

> summary(PMM)

*************************************************

Selected number of clusters via ICL = 10

Selected number of clusters via BIC = 30

Selected number of clusters via Djump = 15

Selected number of clusters via DDSE = 14

*************************************************

>

> summary(PMM$DDSE.results)

*************************************************

Number of clusters = 14

Model selection via DDSE

*************************************************

Cluster sizes:

Cluster 1 Cluster 2 Cluster 3 ...

540 192 235 ...
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RNA-seq application Embryonic fly data

Real data analysis: Embryonic fly development

modENCODE project to provide functional annotation of Drosophila
(Graveley et al., 2011)

Expression dynamics over 27 distinct stages of development during
life cycle studied with RNA-seq

12 embryonic samples (collected at 2-hr intervals over 24 hrs) for
13,164 genes downloaded from ReCount database (Frazee et al.,
2011)

3 independent runs, used HTSCluster to fit Poisson mixture models
for K ∈ {1, . . . , 60, 65, . . . , 100, 110, . . . , 130}
Using slope heuristics, selected model is K̂ = 48
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RNA-seq application Embryonic fly data

HTSCluster model diagnostics

Maximum conditional probability
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RNA-seq application Embryonic fly data

HTSCluster model diagnostics
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RNA-seq application Embryonic fly data

HTSCluster model diagnostics
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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RNA-seq application Embryonic fly data

HTSCluster: Visualization of results
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Functional enrichment analysis: 33 of 48 clusters associated with at
least one Gene Ontology Biological Process term (e.g., cluster 6
associated with muscle attachment)
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Discussion

HTSCluster for clustering count-based RNA-seq profiles

Interpretable parameterization for RNA-seq co-expression analyses,
straightforward parameter estimation, and a sound mechanism for
model selection

Performs well on real and simulated data compared to other
approaches especially when the number of clusters is unknown

Details...

HTSCluster (v2.0.4): R package on CRAN
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Discussion Future work

Some limits (opportunities!) for HTSCluster

Computational time can be a drawback: a full collection of models is
estimated to allow for selection of a single “best” model, splitting
small-EM initialization prevents parallelization...

Samples are currently assumed to be conditionally independent given
the cluster

Conditions are currently assumed to be a single multi-level factor:
how to correctly account for more complex experimental designs?
(e.g. factorial, time series)

Is a Poisson mixture model the most appropriate choice for RNA-seq
data in practice? ...
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Discussion Future work

Future work: Model comparisons for co-expression

Is it better to model the raw counts yij using a Poisson distribution or
appropriately transformed counts t(yij) using a Gaussian distribution?2

f (yi |K , θK ) =
K∑

k=1

πk

J∏
j=1

P(yij |θk)

- vs -

g(t(yi )|K , ηK ) =
K∑

k=1

πkΦ(t(yi )|µk ,Σk)

For example,

t(yij) = log

(
yij/y·j + 1

mi + 1

)

2Ph.D. work of Mélina Gallopin
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Discussion Future work

Future work: Model comparisons for RNA-seq
co-expression

BIC model selection criterion enables an objective comparison:

BICf (K ; y) =
∑n

i=1 log f (yi ;K , θ̂K )− υf
2 log n

BICg (K ; y) =
∑n

i=1 log g(t(yi );K , η̂K ) +
∑n

i=1 log t ′(yi )− υg
2 log n

Left: Sultan et al. (2008). Right: Mach et al. (2014)

Further comparisons of transformations / models in progress...
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Thank you!

In collaboration with...

Gilles Celeux (Inria Saclay - Île-de-France)

Cathy Maugis-Rabusseau (INSA / IMT Toulouse)

Marie-Laure Martin-Magniette (AgroParisTech / INRA URGV)

Panos Papastamoulis (University of Manchester)

Mélina Gallopin (current Ph.D. student)



Estimation of finite mixture models

A finite mixture model may be seen as an incomplete data
structure model

The complete data are

x = (y, z) = (x1, . . . , xn) = ((y1, . . . , yn), (z1, . . . , zn))

where the missing data are z = (z1, . . . , zn) = (zik)
zi component of i , where zik = 1 if i arises from group k and 0
otherwise
z defines a partition P = (P1, . . . ,PK ) of the observed data y with
Pk = {i |zik = 1}

Expected completed likelihood:

L(ΨK ; y, z) =
n∑

i=1

K∑
k=1

zik {log πk + log fk(y;θ)}+ λπ

(
K∑

k=1

πk − 1

)

where λπ is the Lagrange multiplier for the constraint on π



Estimation: EM algorithm (Dempster et al., 1977)

E-step Compute the conditional probabilities:

τik

(
θ

(b)
k

)
=

π
(b)
k f (yi |θ

(b)
k )∑K

m=1 π
(b)
m f (yi |θ

(b)
m )

M-step Update Ψk to maximize the expected value of the completed
likelihood by weighting observation i for cluster k with

τik

(
θ

(b)
k

)
:

π̂
(b+1)
k =

1

n

n∑
i=1

τik

(
θ

(b)
k

)
,

ŵi = yi ··

λ̂
(b+1)
jk =

∑n
i=1 τik

(
θ

(b)
k

)
yij ·

ŝj ·
∑n

i=1 τik

(
θ

(b)
k

)
yi ··

Back...



Splitting initialization (Papastamoulis et al., 2014)

for K ← 2 to gmax do
– Calculate per-class entropy ek = −

∑
i∈k log t̂K−1

ik for model with (K − 1)
clusters
– Select cluster k? = arg maxk ek to be split
for i ← 1 to init.runs do

– Randomly split the observations in cluster k? into two clusters
– Calculate corresponding λ(0,i),K and π(0,i),K

– Update values of λ(0,i),K and π(0,i),K via EM algorithm with
init.iter iterations
– Calculate the log-likelihood L(i),K = L(λ̂(0,i),K , π̂(0,i),K )

end

Let i? = arg maxi L
(i),K . Fix new initial values λ(0),K = λ̂(0,i?),K and

π(0),K = π̂(0,i?),K .
end

Back...



Penalized criteria for model selection: BIC (Schwarz, 1978)

Maximization of integrated likelihood:

m̂ = arg min
m∈M

−f (y|m)

where

f (y|m) =

∫
Θm

f (y|θ,m)Π(θ|m)dθ

Asymptotic approximation (where Dm = (m − 1) + m × J is the
dimension of Sm):

−ln(f (y|m)) ≈ −L(y|θ̂m) +
Dm

2
ln(n)

= nγn(ŝm) +
Dm

2
ln(n)

Bayesian information criterion (BIC):

m̂ = arg min
m∈M

{γn(ŝm) + penBIC(m)} with penBIC(m) =
Dm

2n
ln(n)

Back...



Penalized criteria for model selection: ICL (Biernacki et al., 2000)

Alternative based on maximization of integrated completed likelihood:

m̂ = arg min
m∈M

−f (y, z|m)

where

f (y, z|m) =

∫
Θm

f (y, z|θ,m)Π(θ|m)dθ

BIC-like asymptotic approximation for Integrated Completed
Likelihood (ICL):

m̂ = arg min
m∈M

{−1

n
L(θ̂m|y, ẑ) +

Dm

2n
ln(n)}

= arg min
m∈M

{γn(ŝm) + penBIC(m) + Ent(m)}

where Ent(m) = − 1
n

∑
i

∑
k ẑik ln τik(θ̂m)

Back...



Behavior of BIC and ICL in practice for RNA-seq data
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Behavior of BIC and ICL in practice for RNA-seq data
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Description of competing models

1 PoisL (Cai et al., 2004): K-means type algorithm using Poisson
loglinear model

Equivalent to HTSCluster when equal library sizes, unreplicated data,
equiprobable Poisson mixtures, and parameter estimation via the
Classification EM (CEM) algorithm

2 Witten (2011): hierarchical clustering of dissimilarity measure based
on a Poisosn loglinear model

Originally intended to cluster samples

3 Si et al. (2014): model-based hierarchical algorithm using Poisson
and negative binomial models

4 Classic K-means algorithm on expression profiles (yij`/yi ··)

Model selection not addressed by any of the above ⇒ Caliński and
Harabasz index (1974) used for comparison



Simulation procedure (based on fly and human data)

For each setting (fly and human), 50 individual datasets:

K fixed to 15, true experimental design used

All parameters (λjk), (sj`), and (wi ) fixed to estimated values from
real data analysis

n = 3000 genes randomly sampled from fly or human data, weighted
by their maximum conditional probability

For each selected gene, we sample from the appropriate Poisson
distribution:

Yijl ∼ P(µijlk)

where µijlk = wi sjlλjk if ẑik = 1.



Simulation results

All models fit for K ∈ 1, . . . , 40

Model selection via the slope heuristics (HTSCluster, PoisL) or
CH-index (Si-Pois, Si-NB, Witten)

Models compared using the adjusted Rand Index (ARI, Hubert &
Arabie 1985)

For comparison, also consider the oracle ARI (based on assignment of
observations to clusters using the true parameter values)



Simulation results

Table: Mean (sd) ARI for simulations with parameters based on the fly and human liver.

Method Model selection Fly Human

HTSCluster
capushe 0.93 (0.05) 0.61 (0.02)
True K 0.84 (0.09) 0.60 (0.02)

PoisL
capushe 0.79 (0.15) 0.53 (0.05)
True K 0.82 (0.05) 0.53 (0.04)

Witten
CH index 0.15 (0.07) 0.11 (0.03)
True K 0.67 (0.09) 0.39 (0.04)

Si-Pois
CH index 0.26 (0.17) 0.48 (0.04)
True K 0.95 (0.02) 0.61 (0.02)

Si-NB
CH index 0.23 (0.16) 0.47 (0.04)
True K 0.94 (0.02) 0.60 (0.02)

K-means True K 0.79 (0.08) 0.42 (0.02)

Oracle True K 0.95 (0.01) 0.63 (0.01)

Back...
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