RNA-seq co-expression analysis using mixture models

A. Rau, C. Maugis-Rabusseau, M.-L. Martin-Magniette, G. Celeux

September 29, 2015

Netbio @ Paris

Gene (co-)expression

- Transcriptome data: main source of 'omic information available for living organisms
 - Microarrays (${\sim}1995$)
 - High-throughput sequencing (HTS): RNA-seq (${\sim}2008$)
- \bullet Comparison of two conditions (hypothesis tests) \rightarrow Differential expression analysis

Co-expression (clustering) analysis

- Study gene expression behavior across several conditions
- Co-expressed genes may be involved in similar biological process(es)
 ⇒ study genes without known or predicted function (orphan genes)

High-throughput transcriptome sequencing data (RNA-seq)

 Reads aligned or directly mapped to the genome to get counts per genomic feature (discrete data) ⇒ digital measures of gene expression

RNA-seq data, continued

Some statistical challenges of RNA-seq data analysis

- Discrete, non-negative, and skewed data with very large dynamic range (up to 5+ orders of magnitude)
- Sequencing depth (= "library size") varies among experiments, and other technical biases...
- Counts correlated with gene length

To date, most methodological developments are for experimental design, normalization, and differential analysis...

andrea.rau@jouy.inra.fr

RNA-seq co-expression analysis

Some notation

Notation

Let $Y_{ij\ell}$ be the count (expression measure) for gene *i* in replicate ℓ of condition *j*, with corresponding observed value $y_{ij\ell}$.

- Let $s_{j\ell}$ be the **library size** in replicate ℓ of condition j
- Let y = (y_{ijℓ}) be the n × ∑_j L_j matrix of counts for all genes and variables and y_i the *i*th row of the matrix

Finite mixture models

Model-based clustering

- Rigourous framework for parameter estimation and model selection
- **Output**: each gene assigned a probability of cluster membership

Assume data \mathbf{y} come from K distinct subpopulations, each modeled separately:

$$f(\mathbf{y}|\mathcal{K}, \mathbf{\Psi}_{\mathcal{K}}) = \prod_{i=1}^{n} \sum_{k=1}^{\mathcal{K}} \pi_{k} f_{k}(\mathbf{y}_{i}|\boldsymbol{\theta}_{k})$$

•
$$\Psi_{K} = (\pi_{1}, \dots, \pi_{K-1}, \theta')'$$

• $\pi = (\pi_{1}, \dots, \pi_{K})'$ are the mixing proportions, where $\sum_{k=1}^{K} \pi_{k} = 1$

Finite mixture models for RNA-seq data

$$f(\mathbf{y}|\mathcal{K}, \mathbf{\Psi}_{\mathcal{K}}) = \prod_{i=1}^{n} \sum_{k=1}^{\mathcal{K}} \pi_{k} f_{k}(\mathbf{y}_{i}|\boldsymbol{\theta}_{k})$$

• For microarray data, we often assume $\mathbf{y}_i | k \sim \mathsf{MVN}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$...

Finite mixture models for RNA-seq data

$$f(\mathbf{y}|\mathcal{K}, \mathbf{\Psi}_{\mathcal{K}}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_{k} \mathbf{f}_{k}(\mathbf{y}_{i}|\boldsymbol{\theta}_{k})$$

• For microarray data, we often assume $\mathbf{y}_i | k \sim \mathsf{MVN}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$...

• For RNA-seq data, we need to choose the family and parameterization of $f_k(\cdot)$. One possibility:

$$\mathbf{y}_i | k \sim \prod_{j=1}^J \prod_{\ell=1}^{L_j} \mathcal{P}(y_{ij\ell} | \mu_{ij\ell k})$$

Finite mixture models for RNA-seq data

$$f(\mathbf{y}|\mathcal{K}, \mathbf{\Psi}_{\mathcal{K}}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_{k} \mathbf{f}_{k}(\mathbf{y}_{i}|\boldsymbol{\theta}_{k})$$

• For microarray data, we often assume $\mathbf{y}_i | k \sim \mathsf{MVN}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$...

• For RNA-seq data, we need to choose the family and parameterization of $f_k(\cdot)$. One possibility:

$$\mathbf{y}_i | k \sim \prod_{j=1}^J \prod_{\ell=1}^{L_j} \mathcal{P}(y_{ij\ell} | \mu_{ij\ell k})$$

Question: How to parameterize the mean $\mu_{ij\ell k}$ to obtain meaningful clusters of co-expressed genes?

andrea.rau@jouy.inra.fr

Which genes should be clustered?

Which genes should be clustered?

Which genes should be clustered?

Poisson mixture model for RNA-seq data

Consider $y_{ij\ell}|k \sim \text{Poisson}(y_{ij\ell}|\mu_{ij\ell k})$, where

 $\mu_{ij\ell k} = w_i s_{j\ell} \lambda_{jk}$

- w_i : overall expression level of gene $i (= y_{i..})$
- $s_{j\ell}$: normalized library size^a

• $\lambda_k = (\lambda_{jk})$: parameters that define profiles of genes in each cluster^b

^aEstimated from data using standard techniques and considered to be fixed ^bFor identifiability of model, we assume $\sum_{i,\ell} \lambda_{jk} s_{j\ell} = 1$ for all k

Poisson mixture model for RNA-seq data

Consider $y_{ij\ell}|k \sim \text{Poisson}(y_{ij\ell}|\mu_{ij\ell k})$, where

 $\mu_{ij\ell k} = w_i s_{j\ell} \lambda_{jk}$

- w_i : overall expression level of gene $i (= y_{i..})$
- $s_{j\ell}$: normalized library size^a

• $\lambda_k = (\lambda_{jk})$: parameters that define profiles of genes in each cluster^b

^aEstimated from data using standard techniques and considered to be fixed ^bFor identifiability of model, we assume $\sum_{i,\ell} \lambda_{jk} s_{j\ell} = 1$ for all k

• Genes assigned to the same cluster if they share the same profile of variation around their mean count across all conditions

Implementation

Parameter estimation

The log likelihood is

$$L(\mathbf{\Psi}_{K}|\mathbf{y},K) = \log\left[\prod_{i=1}^{n} f(\mathbf{y}_{i}|K,\mathbf{\Psi}_{K})\right] = \sum_{i=1}^{n} \log\left[\sum_{k=1}^{K} \pi_{k} f(\mathbf{y}_{i}|\boldsymbol{\theta}_{k})\right],$$

where $\boldsymbol{\theta}_k = (w_i, \lambda_{1k}, \dots, \lambda_{dK})^t$

Parameter estimation

The log likelihood is

$$L(\mathbf{\Psi}_{K}|\mathbf{y},K) = \log\left[\prod_{i=1}^{n} f(\mathbf{y}_{i}|K,\mathbf{\Psi}_{K})\right] = \sum_{i=1}^{n} \log\left[\sum_{k=1}^{K} \pi_{k} f(\mathbf{y}_{i}|\boldsymbol{\theta}_{k})\right],$$

re $\boldsymbol{\theta}_{k} = (w_{k},\lambda_{1},\dots,\lambda_{n})^{\prime}$

where $\boldsymbol{\theta}_k = (w_i, \lambda_{1k}, \dots, \lambda_{dK})'$

- Estimation approach (EM): mixture parameters are estimated for a given model K by computing the maximum likelihood estimate (Dempster et al. 1977) Details...
- Note: the EM algorithm is sensitive to initialization, so we make use of a **splitting small-EM** initialization Details...

Implementation

Classification by the MAP rule

"Maximum a posteriori" (MAP) rule:

• Each individual is attributed to the cluster for which it has the largest conditional probability of membership given the estimated parameters:

$$\tau_{ik}(\theta) = \frac{\pi_k f_k(\mathbf{y}_i | \theta_k)}{\sum_{\ell=1}^{K} \pi_\ell f_\ell(\mathbf{y}_i | \theta_\ell)}$$

• MAP rule with $\hat{\theta}_{\kappa}$:

$$\hat{z}_{ik} = \begin{cases} 1 & \text{if } \tau_{ik} \left(\hat{\theta}_{K} \right) > \tau_{i\ell} \left(\hat{\theta}_{K} \right) \forall \ell \neq k \\ 0 & \text{otherwise} \end{cases}$$

Model selection

- **O** Collection of models $(S_K)_{K \in \mathcal{K}}$ indexed by number of clusters K
- **2** In each model S_K , parameter estimation via MLE: $\hat{\Psi}_K$
- Selection of the "best" model \hat{K} using a penalized criterion:

$$\hat{\mathcal{K}} = \argmin_{\mathcal{K} \in \mathcal{K}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log f(\mathbf{y}_i | \mathcal{K}, \hat{\Psi}_{\mathcal{K}}) + \text{penalty}(\mathcal{K}) \right\}$$

 \Rightarrow Asymptotic penalized criteria include Bayesian Information Criterion (BIC) and Integrated Completed Likelihood (ICL) • Details...

Slope heuristics for model selection (Birgé and Massart, 2006)

- Non-asymptotic framework: construct a penalized criterion¹ such that the selected model has a risk close to the oracle model
- Optimal penalty for model of dimension D:

penalty_{opt}
$$\approx 2\kappa \frac{D}{n}$$

¹Theoretically validated in Gaussian framework, but encouraging applications in other contexts (Baudry et al., 2012)

Slope heuristics for model selection (Birgé and Massart, 2006)

- Non-asymptotic framework: construct a penalized criterion¹ such that the selected model has a risk close to the oracle model
- Optimal penalty for model of dimension D:

$$\mathsf{penalty}_{\mathsf{opt}} \approx 2\kappa \frac{D}{n}$$

In large dimensions:

- Linear behavior of loglikelihood with respect to model dimension D
- ⇒ Estimation of slope to calibrate ^ˆk in a data-driven manner (Data-Driven Slope Estimation = DDSE), capushe R package

¹Theoretically validated in Gaussian framework, but encouraging applications in other contexts (Baudry et al., 2012)

Slope heuristics in practice for RNA-seq

penshape(m) (labels : Model names)

RNA-seq co-expression analysis

HTSCluster R package

```
> PMM <- PoisMixClusWrapper(y=data, gmin=1, gmax=35,</p>
 conds=conds, split.init=TRUE, norm="TMM")
>
> summary(PMM)
*******
Selected number of clusters via TCL = 10
Selected number of clusters via BIC = 30
Selected number of clusters via Djump = 15
Selected number of clusters via DDSE = 14
   *****
>
> summary(PMM$DDSE.results)
Number of clusters = 14
Model selection via DDSE
Cluster sizes:
Cluster 1 Cluster 2 Cluster 3 ....
540
   192
              235
                      . . .
```

Real data analysis: Embryonic fly development

- modENCODE project to provide functional annotation of Drosophila (Graveley et al., 2011)
- Expression dynamics over 27 distinct stages of development during life cycle studied with RNA-seq
- 12 embryonic samples (collected at 2-hr intervals over 24 hrs) for 13,164 genes downloaded from ReCount database (Frazee et al., 2011)

Embryonic fly data

Real data analysis: Embryonic fly development

- modENCODE project to provide functional annotation of Drosophila (Graveley et al., 2011)
- Expression dynamics over 27 distinct stages of development during life cycle studied with RNA-seq
- 12 embryonic samples (collected at 2-hr intervals over 24 hrs) for 13,164 genes downloaded from ReCount database (Frazee et al., 2011)
- 3 independent runs, used HTSCluster to fit Poisson mixture models for $K \in \{1, \dots, 60, 65, \dots, 100, 110, \dots, 130\}$
- Using slope heuristics, selected model is $\hat{K} = 48$

HTSCluster model diagnostics

Maximum conditional probability

RNA-seq co-expression analysis

HTSCluster model diagnostics

Cluster

HTSCluster model diagnostics

• Functional enrichment analysis: 33 of 48 clusters associated with at least one Gene Ontology Biological Process term (e.g., cluster 6 associated with muscle attachment)

HTSCluster for clustering count-based RNA-seq profiles

- Interpretable parameterization for RNA-seq co-expression analyses, straightforward parameter estimation, and a sound mechanism for model selection
- Performs well on real and simulated data compared to other approaches especially when the number of clusters is unknown
- HTSCluster (v2.0.4): R package on CRAN

BIOINFORMATICS

Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models

Andrea Rau ^{1,2}, Cathy Maugis-Rabusseau ³, Marie-Laure Martin-Magniette^{4,5,6,7} and Gilles Celeux ⁸

Some limits (opportunities!) for HTSCluster

- Computational time can be a drawback: a full collection of models is estimated to allow for selection of a single "best" model, splitting small-EM initialization prevents parallelization...
- Samples are currently assumed to be conditionally independent given the cluster
- Conditions are currently assumed to be a single multi-level factor: how to correctly account for more complex experimental designs? (e.g. factorial, time series)
- Is a Poisson mixture model the most appropriate choice for RNA-seq data in practice? ...

Future work: Model comparisons for co-expression

Is it better to model the raw counts y_{ij} using a Poisson distribution or appropriately transformed counts $t(y_{ij})$ using a Gaussian distribution?²

$$f(\mathbf{y}_i|K, \theta_K) = \sum_{k=1}^{K} \pi_k \prod_{j=1}^{J} \mathcal{P}(y_{ij}|\theta_k)$$

- vs -
$$g(t(\mathbf{y}_i)|K, \eta_K) = \sum_{k=1}^{K} \pi_k \Phi(t(\mathbf{y}_i)|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

²Ph.D. work of Mélina Gallopin

andrea.rau@jouy.inra.fr

Future work: Model comparisons for co-expression

Is it better to model the raw counts y_{ij} using a Poisson distribution or appropriately transformed counts $t(y_{ij})$ using a Gaussian distribution?²

$$f(\mathbf{y}_i|K, \theta_K) = \sum_{k=1}^{K} \pi_k \prod_{j=1}^{J} \mathcal{P}(y_{ij}|\theta_k)$$

- vs -
$$g(t(\mathbf{y}_i)|K, \eta_K) = \sum_{k=1}^{K} \pi_k \Phi(t(\mathbf{y}_i)|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

For example,

$$t(y_{ij}) = \log\left(\frac{y_{ij}/y_{\cdot j} + 1}{m_i + 1}\right)$$

²Ph.D. work of Mélina Gallopin

andrea.rau@jouy.inra.fr

Future work: Model comparisons for RNA-seq co-expression

BIC model selection criterion enables an objective comparison:

• BIC_f(K; y) = $\sum_{i=1}^{n} \log f(\mathbf{y}_i; K, \hat{\theta}_K) - \frac{\upsilon_f}{2} \log n$ • BIC_g(K; y) = $\sum_{i=1}^{n} \log g(t(\mathbf{y}_i); K, \hat{\eta}_K) + \sum_{i=1}^{n} \log t'(\mathbf{y}_i) - \frac{\upsilon_g}{2} \log n$

Future work: Model comparisons for RNA-seq co-expression

BIC model selection criterion enables an objective comparison:

• BIC_f(K; y) =
$$\sum_{i=1}^{n} \log f(\mathbf{y}_i; K, \hat{\theta}_K) - \frac{v_f}{2} \log n$$

• BIC_g(K; y) = $\sum_{i=1}^{n} \log g(t(\mathbf{y}_i); K, \hat{\eta}_K) + \sum_{i=1}^{n} \log t'(\mathbf{y}_i) - \frac{v_g}{2} \log n$

Left: Sultan et al. (2008). Right: Mach et al. (2014)

Further comparisons of transformations / models in progress...

Thank you!

In collaboration with...

- Gilles Celeux (Inria Saclay Île-de-France)
- Cathy Maugis-Rabusseau (INSA / IMT Toulouse)
- Marie-Laure Martin-Magniette (AgroParisTech / INRA URGV)
- Panos Papastamoulis (University of Manchester)
- Mélina Gallopin (current Ph.D. student)

Estimation of finite mixture models

- A finite mixture model may be seen as an **incomplete data structure** model
- The complete data are

$$\mathbf{x} = (\mathbf{y}, \mathbf{z}) = (\mathbf{x}_1, \dots, \mathbf{x}_n) = ((\mathbf{y}_1, \dots, \mathbf{y}_n), (\mathbf{z}_1, \dots, \mathbf{z}_n))$$

where the **missing data** are $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_n) = (z_{ik})$

- **z**_i component of *i*, where $z_{ik} = 1$ if *i* arises from group *k* and 0 otherwise
- **z** defines a partition $P = (P_1, ..., P_K)$ of the observed data **y** with $P_k = \{i | z_{ik} = 1\}$
- Expected completed likelihood:

$$\mathcal{L}(\boldsymbol{\Psi}_{\mathcal{K}}; \mathbf{y}, \mathbf{z}) = \sum_{i=1}^{n} \sum_{k=1}^{\mathcal{K}} z_{ik} \left\{ \log \pi_{k} + \log f_{k}(\mathbf{y}; \boldsymbol{\theta}) \right\} + \lambda^{\pi} \left(\sum_{k=1}^{\mathcal{K}} \pi_{k} - 1 \right)$$

where λ^{π} is the Lagrange multiplier for the constraint on π

Estimation: EM algorithm (Dempster et al., 1977)

E-step Compute the conditional probabilities:

$$\tau_{ik}\left(\boldsymbol{\theta}_{k}^{(b)}\right) = \frac{\pi_{k}^{(b)}f(\mathbf{y}_{i}|\boldsymbol{\theta}_{k}^{(b)})}{\sum_{m=1}^{K}\pi_{m}^{(b)}f(\mathbf{y}_{i}|\boldsymbol{\theta}_{m}^{(b)})}$$

M-step Update Ψ_k to maximize the expected value of the completed likelihood by weighting observation i for cluster k with $\tau_{ik}\left(\boldsymbol{\theta}_{k}^{(b)}\right)$: $\hat{\pi}_{k}^{(b+1)} = \frac{1}{n} \sum_{i=1}^{n} \tau_{ik} \left(\boldsymbol{\theta}_{k}^{(b)} \right),$ $\hat{w}_i = v_{i..}$ $\hat{\lambda}_{jk}^{(b+1)} = \frac{\sum_{i=1}^{n} \tau_{ik} \left(\boldsymbol{\theta}_{k}^{(b)}\right) y_{ij\cdot}}{\hat{s}_{j\cdot} \sum_{i=1}^{n} \tau_{ik} \left(\boldsymbol{\theta}_{k}^{(b)}\right) y_{i\cdot\cdot}}$

Splitting initialization (Papastamoulis et al., 2014)

for $K \leftarrow 2$ to gmax do - Calculate per-class entropy $e_k = -\sum_{i \in k} \log \hat{t}_{ik}^{K-1}$ for model with (K-1)clusters - Select cluster $k^* = \arg \max_k e_k$ to be split for $i \leftarrow 1$ to init.runs do - Randomly split the observations in cluster k^* into two clusters - Calculate corresponding $\lambda^{(0,i),K}$ and $\pi^{(0,i),K}$ – Update values of $\lambda^{(0,i),K}$ and $\pi^{(0,i),K}$ via EM algorithm with init.iter iterations – Calculate the log-likelihood $L^{(i),K} = L(\hat{\lambda}^{(0,i),K}, \hat{\pi}^{(0,i),K})$ end Let $i^* = \arg \max_i L^{(i),K}$. Fix new initial values $\lambda^{(0),K} = \hat{\lambda}^{(0,i^*),K}$ and $\pi^{(0),K} = \hat{\pi}^{(0,i^*),K}$

end

∢ Back...

Penalized criteria for model selection: BIC (Schwarz, 1978)

• Maximization of integrated likelihood:

$$\hat{m} = \operatorname*{arg\,min}_{m \in \mathcal{M}} - f(\mathbf{y}|m)$$

where

$$f(\mathbf{y}|m) = \int_{\Theta_m} f(\mathbf{y}| heta,m) \Pi(heta|m) d heta$$

Asymptotic approximation (where D_m = (m − 1) + m × J is the dimension of S_m):

$$-\ln(f(\mathbf{y}|m)) \approx -L(\mathbf{y}|\hat{\theta}_m) + rac{D_m}{2}\ln(n)$$

 $= n\gamma_n(\hat{s}_m) + rac{D_m}{2}\ln(n)$

• Bayesian information criterion (BIC):

$$\hat{m} = \operatorname*{arg\,min}_{m \in \mathcal{M}} \{\gamma_n(\hat{s}_m) + \operatorname{pen}_{\mathsf{BIC}}(m)\}\ \text{with }\operatorname{pen}_{\mathsf{BIC}}(m) = \frac{D_m}{2n} \ln(n)$$

Penalized criteria for model selection: ICL (Biernacki et al., 2000)

• Alternative based on maximization of integrated completed likelihood:

$$\hat{m} = \operatorname*{arg\,min}_{m \in \mathcal{M}} - f(\mathbf{y}, \mathbf{z} | m)$$

where

$$f(\mathbf{y}, \mathbf{z}|m) = \int_{\Theta_m} f(\mathbf{y}, \mathbf{z}|\theta, m) \Pi(\theta|m) d\theta$$

 BIC-like asymptotic approximation for Integrated Completed Likelihood (ICL):

$$\begin{split} \hat{m} &= \arg\min_{m \in \mathcal{M}} \{-\frac{1}{n} L(\hat{\theta}_m | \mathbf{y}, \hat{\mathbf{z}}) + \frac{D_m}{2n} \ln(n) \} \\ &= \arg\min_{m \in \mathcal{M}} \{\gamma_n(\hat{s}_m) + \text{pen}_{\text{BIC}}(m) + \text{Ent}(m) \} \end{split}$$

where $\operatorname{Ent}(m) = -\frac{1}{n} \sum_{i} \sum_{k} \hat{z}_{ik} \ln \tau_{ik}(\hat{\theta}_m)$

Behavior of BIC and ICL in practice for RNA-seq data

Behavior of BIC and ICL in practice for RNA-seq data

Description of competing models

- PoisL (Cai et al., 2004): K-means type algorithm using Poisson loglinear model
 - Equivalent to HTSCluster when equal library sizes, unreplicated data, equiprobable Poisson mixtures, and parameter estimation via the Classification EM (CEM) algorithm
- Witten (2011): hierarchical clustering of dissimilarity measure based on a Poisosn loglinear model
 - Originally intended to cluster samples
- Si et al. (2014): model-based hierarchical algorithm using Poisson and negative binomial models
- Classic K-means algorithm on expression profiles $(y_{ij\ell}/y_{i..})$

Model selection not addressed by any of the above \Rightarrow Caliński and Harabasz index (1974) used for comparison

Simulation procedure (based on fly and human data)

For each setting (fly and human), 50 individual datasets:

- K fixed to 15, true experimental design used
- All parameters (λ_{jk}) , $(s_{j\ell})$, and (w_i) fixed to estimated values from real data analysis
- *n* = 3000 genes randomly sampled from fly or human data, weighted by their maximum conditional probability
- For each selected gene, we sample from the appropriate Poisson distribution:

$$Y_{ijl} \sim \mathcal{P}(\mu_{ijlk})$$

where $\mu_{ijlk} = w_i s_{jl} \lambda_{jk}$ if $\hat{z}_{ik} = 1$.

- All models fit for $K \in 1, \ldots, 40$
- Model selection via the slope heuristics (HTSCluster, PoisL) or CH-index (Si-Pois, Si-NB, Witten)
- Models compared using the adjusted Rand Index (ARI, Hubert & Arabie 1985)
- For comparison, also consider the oracle ARI (based on assignment of observations to clusters using the true parameter values)

Simulation results

Table: Mean (sd) ARI for simulations with parameters based on the fly and human liver.

Method	Model selection	Fly	Human
HTSCluster	capushe	0.93 (0.05)	0.61 (0.02)
	True <i>K</i>	0.84 (0.09)	0.60 (0.02)
PoisL	capushe	0.79 (0.15)	0.53 (0.05)
	True <i>K</i>	0.82 (0.05)	0.53 (0.04)
Witten	CH index	0.15 (0.07)	0.11 (0.03)
	True <i>K</i>	0.67 (0.09)	0.39 (0.04)
Si-Pois	CH index	0.26 (0.17)	0.48 (0.04)
	True <i>K</i>	0.95 (0.02)	0.61 (0.02)
Si-NB	CH index	0.23 (0.16)	0.47 (0.04)
	True <i>K</i>	0.94 (0.02)	0.60 (0.02)
K-means	True K	0.79 (0.08)	0.42 (0.02)
Oracle	True K	0.95 (0.01)	0.63 (0.01)