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Where do I live? ... and work!

In Brisbane, Australia since late 2008

In 2014 I moved to the Translational
Research Institute, the Australian-first
initiative of ‘bench to bedside’ medical
research to build my own research group.
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Systems biology

Systems biology is the study of complex interactions in
biological systems

Holism vs. reductionism

‘Systems biology [...] requires that we develop
ways of thinking about integration that are as
rigorous as our reductionist programmes, but
different [...].It means changing our philosophy,
in the full sense of the term.’
Denis Noble (2006)

→ an inter-disciplinary field enabling a better understanding of the
entirety of processes that happen in a biological system
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Challenges

Challenges

Close interaction between statisticians, bioinformaticians and
molecular biologists

Understand the biological problem
Irrelevant or noisy variables
# samples small << # variables
→ statistical validation limited
Rely on biological interpretation
Keep up with new technologies
Anticipate computational issues
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Data integration

How to make sense of biological ‘big data’?

=⇒

from PMID: 22548756

‘What is the key information I can extract from heterogeneous data sets?’
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Multivariate analysis

Linear multivariate approaches

Linear multivariate approaches use latent variables (e.g. variables
that are not directly observed) to reduce the dimensionality of the
data.

A large number of observable variables are aggregated in linear
models to summarize the data.

Dimension reduction
→ project the data in a smaller subspace
Handle highly correlated, irrelevant, missing values
Capture experimental and biological variation
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Multivariate analysis

Multivariate methods (briefly) presented today

Aims Single ‘omics Multiple ‘omics

Unsupervised
Data mining PCA CCA (2 ‘omics)
Exploration PLS (2 ‘omics)
Correlated features GCCA ( > 2 ‘omics)

Supervised

Biomarker discovery PLS-DA GCC-DA ( > 2 ‘omics)
Data mining
Exploration
Correlated features

Kim-Anh Lê Cao

NETBIO 29-30 Sept 2015



Introduction Multivariate analysis for biological data Integration for multiple data sets Results Conclusions

Linear combination 101

A bit of algebra: a linear combination of variables

X =

Height Weight
1 174.0 65.6
2 175.3 71.8
3 193.5 80.7
4 186.5 72.6
5 187.2 78.8
6 181.5 74.8
7 184.0 86.4
8 184.5 78.4
9 175.0 62.0
10 184.0 81.6

We assign two coefficients a1 = 0.5 and a2 = 2 to the variables
Height and Weight respectively: a =

(0.5
2

)
Merci Sébastien Déjean

Kim-Anh Lê Cao

NETBIO 29-30 Sept 2015



Introduction Multivariate analysis for biological data Integration for multiple data sets Results Conclusions

Linear combination 101

A bit of algebra: a linear combination of variables
A linear combination of Height and Weight with the coefficients
a1 = 0.5 (associated to Height) and a2 = 2 (associated to Weight)
is defined as:

0.5 ×

Height
174.0
175.3
193.5
186.5
187.2
181.5
184.0
184.5
175.0
184.0

+ 2 ×

Weight
65.6
71.8
80.7
72.6
78.8
74.8
86.4
78.4
62.0
81.6

=

Linear combination
218.20
231.25
258.15
238.45
251.20
240.35
264.80
249.05
211.50
255.20

We can write the linear combination as a matrix product:
Linear combination = Xa, with X is a matrix of size (n× p) and a
is a vector of length p

Merci Sébastien Déjean
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Multivariate approaches

Principal Component Analysis

PCA objective function for the first component:

max
||a||=1

var(Xa)

wihere X is a matrix (n × p), a is the loading vector of length p
and t = Xa is the first Principal Component.

Other Principal Components follow with the condition that they are
orthogonal to each other.
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Multivariate approaches

Principal Component Analysis
PCA as a matrix decomposition

PCA solved with Singular Value
Decomposition: X = U∆AT

∆ diagonal matrix with
√
δh

(eigenvalues)

T = U∆, T contains the PCs th

A contains the loading vectors ah

(eigenvectors)

h = 1..H is the number of PCs

The variance of the first principal component t1 is equal to its associated
eigenvalue δ1, and so fourth for the other PCs. The eigenvalues δh decrease
and correspond to the explained variance per component.
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Multivariate approaches

Canonical Correlation Analysis

CCA objective function for the first set of variates:

argmax
a, b

cor(Xa,Y b)

subject to var(Xa) = var(Y b) = 1,

where X is a matrix (n × p) and Y is a matrix (n × q), the pair of
vectors (t = Xa, u = Y b) are the canonical variates, and (a,b)
are the associated canonical factors.

Other Canonical variates follow with the condition that they are
orthogonal to each other.

Kim-Anh Lê Cao
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Multivariate approaches

Canonical Correlation Analysis
CCA is solution to the eigenvalues
problem:

S−1
XX

SXY S
−1
YY

SYX a = λ2a ,

S−1
YY

SYXS
−1
XX

SXY b = λ2b .

SXX and SYY are the sample correlation
matrices of X and Y

SXY = S ′YX are the sample
cross-correlation matrix between X and Y

ρ =
√
λ = cor(a, b) is the fist canonical

correlation
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Multivariate approaches

Projection to Latent Structures

PLS objective function for the first set of variates:

arg max
||a||=1, ||b||=1

cov(Xa,Y b),

where X is a matrix (n × p) and Y is a matrix (n × q), the pair of
vectors (t = Xa, u = Y b) are the latent variables, and (a,b) are
the associated loading vectors.

Other latent variables follow with the condition that they are
orthogonal to each other.
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Multivariate approaches

Projection to Latent Structures
PLS can be solved via SVD:

X ′Y = AΛB ′

A (p × r) and B (q × r) contain the left
and right singular vectors ah and bh

(loading vectors), h = 1, . . . ,H, H ≤ r ,
where r is the rank of the matrix X ′Y .

Latent variables (t, u) can be calculated
as: t = Xa and u = Y b

PLS can also be solved iteratively via successive regressions of t on
X and Y to maximise cov(t,u), see following slides.
PLS-Discriminant Analysis: Y categorical response variable is
coded as a dummy matrix.
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Going sparse

Sparse multivariate analysis
High throughput biological experiments: too many variables, noisy
or irrelevant.
→ clearer signal if some of the variable weights {a1, . . . , ap} were
set to 0 for the ‘irrelevant’ variables (small weights) e.g. in PCA:

t = 0 ∗ x1 + a2x2 + a3x3 + · · ·+ 0 ∗ xp

Important weights = important contribution to define the PCs.
Null weights = those variables are not taken into account when
calculating that PC.

Kim-Anh Lê Cao

NETBIO 29-30 Sept 2015



Introduction Multivariate analysis for biological data Integration for multiple data sets Results Conclusions

Going sparse

Rank-l approximation matrix with PCA

Since PCA is solved through SVD (X = U∆AT ), the closest rank-l
matrix approximation to X is:

X (l) ≡
l∑

h=1

δhuhah′ .

Therefore, the best rank-1 approximation of X in terms of
Frobenius norm∗ is:

min
t,a
||X − ta

′ ||2F

when t = δ1u1 and a = a1.

∗The Frobenius norm between X and X (l) is defined as:
||X − X (l)||2F = trace{(X − X (l))(X − X (l))T}.

Kim-Anh Lê Cao
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Going sparse

Solving sparse PCA
In PCA, a can also be solved via a least square regression of a fixed
component t on X :

t = Xa + ε.

Therefore LASSO penalization λ can be introduced such that

min
λ

n∑
i=1

(ti − xia)2 + λ

p∑
j=1

|aj |.

The objective function of sPCA can be written as

min
t,a
||X − taT ||2F + Ppen(a), s.t. ||a|| = 1.

In practice Ppen is a soft thresholding function that approximates
the LASSO.

Kim-Anh Lê Cao
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Going sparse

sparse loadings vectors in PCA

sPCA is solved iteratively via the
algorithm Non Linear Iterative Partial
Least Squares (NIPALS, Wold 1987):

remove irrelevant variables when
calculating the principal
components,
perform internal variable selection.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. JRSSB

Shen, H., Huang, J.Z. (2008). Sparse principal component analysis via regularized

low rank matrix approximation, J. Multivariate Analysis.
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Dealing with the large dimension

Regularized CCA
When n << p and n << q SXX and SYY are singular and
ill-conditioned. → CCA leads to unreliable results.

Solution: regularization of the correlation matrices in CCA:

SXX (τ1) = SXX + τ11p

SYY (τ2) = SYY + τ21q ,

where τ1 and τ2 are non-negative numbers, estimated with
cross-validation1 or shrinkage method2.

1 González I. et al., 2009. Highlighting relationships between heterogeneous biological
data through graphical displays based on regularized canonical correlation
analysis.Journal of Biological Systems 17(2).
2 Schäfer and Strimmer (2005). A shrinkage approach to large-scale covariance matrix

estimation and implications for functional genomics. SAGMB, 4(1).
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Dealing with the large dimension

Rank-l approximation matrix with PLS
In the same vein as sPCA, PLS is solved through SVD
(XTY = AΛBT ) and the best rank-1 approximation of XTY is:

min
a,b
||XTY − aTb||2F

In PLS, the loading vectors a,b can also be solved through
successive least squares regressions of t on X and Y :

Repeat until convergence of u:
1 a = XT t/tT t, norm a
2 t = Xa/aTa
3 b = Y T t/tT t, norm b
4 u = Y b/bTb

→ introduce LASSO penalisations on both a and b!

Kim-Anh Lê Cao
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Dealing with the large dimension

Rank-l approximation matrix with PLS

The objective function of sPLS can be written as

min
a,b
||XTY−aTb||2F +Ppen(a)+Ppen(b), s.t. ||a|| = 1, ||b|| = 1.

In practice Ppen is a soft thresholding function to approximate the
LASSO penalisations:

simultaneous sparse loadings a and b for each set of PLS
components.
selected variables from both data sets are correlated across
samples.

Lê Cao et al (2008). A sparse PLS for variable selection when integrating omics data.
SAGMB 7.
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Aims

Biomarker discovery when integrating multiple data sets
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Data sets are sample matched
Select relevant biological features that are correlated within
across heterogeneous data sets
Extend sPLS, sPLS-DA (new!) and rCCA

Tenenhaus A, Lê Cao K-A. et al. (2014). Variable selection for generalized canonical
correlation analysis. Biostatistics.
Günther O., Lê Cao K-A. et al. (2014) Novel multivariate methods for integration of
genomics and proteomics data: Applications in a kidney transplant rejection study,
OMICS: A journal of integrative biology, 18(11), 682-95.
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Aims

Generalised Canonical Correlation Analysis
For J blocks of variables X 1, . . . ,X J of size (n × p), (n × q), . . . ,
GCCA optimizes the problem:

max
a1,...,aJ

J∑
j ,k=1,j 6=k

ckjCov(X jaj ,X kak)

with the constraints
for regularised GCCA: τj ||aj ||2 + (1− τj)Var(X jaj) = 1

or
for sparse GCCA: ||aj ||2 = 1 and ||aj ||1 ≤ λj

C = {cj ,k} is the design matrix
aj are the loading vectors associated to each block j ,
τj is the regularization parameter on each data set j
λj is the lasso parameter on each data set j , j = 1, . . . , J

Kim-Anh Lê Cao
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Aims

The design matrix C in GCCA

The design to ‘link’ the datasets (link == covariance is maximised)
has an impact:
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is coded as
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Aims

Parameters to tune

How to best choose the GCCA parameters?

The number of components H
The design matrix C
rGCCA: Regularization parameters τj for each covariance
matrix from each data set→ shrinkage method
sGCCA: Number of variables to select on each component of
each data set (instead of Lasso parameters λh

j ) →
cross-validation

Kim-Anh Lê Cao
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Aims

Prediction in GCC-DA
Let’s go back one step with the simple PLS-DA model where Y is a
categorical response vector coded as a dummy matrix.

The PLS-DA model is formulated as:
Y = Xβ + E ,

where β is the matrix of the regression coefficients and E is the residual matrix.

The prediction of a new sample is then:
Ŷ = Xnew β̂,

where β̂ is directly obtained from the loading vectors (a1, a2, . . . , aH), where H
is the chosen PLS dimension and Xnew data matrix of a new sample.

Ŷ is a continuous numerical value (not a class number!)
→ we use distances to obtain the class prediction.

Kim-Anh Lê Cao
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Aims

Prediction in GCC-DA
In GCCA we model each data set Xj as:

Y1 = X1β1 + E1, Y2 = X2β2 + E2, . . . ,YJ = XJβJ + EJ

with the GCCA constraints and the maximisation of the covariance
btw components of each data set.

The prediction of a new sample is then for each type of data:

Ŷ1 = Xnew β̂1, Ŷ2 = Xnew β̂2, . . . , ŶJ = Xnew β̂J

where each β̂j are obtained from the set of loading vectors (a1, a2, . . . , aH),
with H the chosen GCCA dimension and Xnew data matrix of a new sample.

To obtain the final prediction of a new sample:
we use distances on either the average of all Ŷj or
we take the majority vote of all predictions from all data sets

Kim-Anh Lê Cao
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Visualisations

What is there for our fellow biologists?

Visualisations to make sense of those large data sets.

Using components to
project samples in their

own subspace

cor(Xj ,Xjah
j ) projects the

variables on each h
component t j ,h = Xjah

j

List of biomarkers of
different molecular

types

Kim-Anh Lê Cao
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Visualisations

What more is there for our fellow biologists?
Correlation circle plots to understand the relationships between
those large biological data sets

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Dimension  1

D
im

en
si

on
  2

●

Xj

cor(Xj, U1)

cor(Xj, U2)

(a)

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Dimension  1

D
im

en
si

on
  2   X1

  Y1

  X2

  Y2

α

β

θ

(b)

Project variables on the
components (t1, t2):
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(b)

Project X and Y variables on the components
(t1,1, t1,2) and (t2,1, t2,2):

(cor(X , t1,1), cor(X , t1,2)) and
(cor(Y , t2,1), cor(Y , t2,2))
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Visualisations

Correlation Circle plots when integrating different types of
variables

Correlation circle plots generalised to more than 2 types of variables

Project Xj selected variables on their
components (Xjaj,1,Xjaj,2) with

coordinates (cor(Xj , t j,1), cor(Xj , t j,2))

Different types of variables
projected in comparable spaces∗

Enables visualisation of strong
positive and negative correlations

To put in relation with sample plots

∗ assuming we have maximised the covariance between components

Kim-Anh Lê Cao
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Visualisations

Bipartite relevance networks
Define similarity between different types of variables using
components as intermediate steps:

sim(X l
j ,X

m
k ) '

H∑
h=1,j 6=k

cor(X l
j , t

j ,h)cor(Xm
k , t

k,h)

Efficient to compute
In rCCA and sPLS showed to unravel
‘true’ correlations in simulated data∗

Assumption: cov or cor btw
components is maximal
Similarity matrix is input into network
visualisation

∗González I., Lê Cao K.-A., et al
(2012) Visualising association
between paired ‘omics’ data sets.
J. Data Mining.
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TCGA data

Context

PhD project of Amrit Singh (UBC Vancouver), who
came for a 3-month scientific visit to UQDI in 2014 as part of his
Ph.D project to integrate multiple ‘omics data sets.

Breast cancer is a heterogeneous disease with respect to
molecular alterations, cellular composition, and clinical outcome.

challenge in developing tumor classifications that are clinically
useful with respect to prognosis or prediction
intrinsic classifier based on a signature of 50 genes (PAM50
classifier1)

1Tibshirani R, et al. (2002) Diagnosis of multiple cancer types by shrunken
centroids of gene expression. PNAS 99
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TCGA data

Multi ‘omics Breast cancer study from The Cancer Genome
Atlas

Four intrinsic subtypes luminal A, luminal B, HER2-enriched,
basal-like
training set n = 377, test set n = 573
mRNA, miRNA, proteomics and methylation data with max
2,000 features (mRNA without the PAM50 genes!)

Kim-Anh Lê Cao
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Comparisons

Comparisons with other methods
Single ‘omics Multiple ‘omics

Unsupervised PCA

Supervised

sPLS-DA1 Concatenation3 + eNet/sPLS-DA
eNet2 Ensemble4 + eNet/sPLS-DA

sGCC-DA null design
sGCC-DA full design

2 elastic net: regularized regression method that linearly combines
l1 (lasso) and l2 (ridge) penalties.
3 concatenate all ’omics data sets;
4 apply eNet/sPLS-DA classifier on each data set separately and
combine the different lists of selected variables.
1 Lê Cao, K.-A. et al (2011). Sparse PLS Discriminant Analysis: biologically relevant
feature selection and graphical displays for multiclass problems. BMC bioinfo, 12(1).
2 Zou, Hastie (2005). Regularization and Variable Selection via the Elastic Net.

JRSSBKim-Anh Lê Cao
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Comparisons

Comparisons with other methods
Single ‘omics Multiple ‘omics

Unsupervised PCA

Supervised

sPLS-DA1 Concatenation3 + eNet/sPLS-DA
eNet2 Ensemble4 + eNet/sPLS-DA

sGCC-DA null design
sGCC-DA full design
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Comparisons

Understanding the data: clustering
Dunn Index is a metric to evaluate clusterings - here based on the
known tumour subtypes.
Calculated based on 3 components for each method with Euclidian distance.

The mRNA data set clusters tumour subtypes well.
sGCC-DA null design clusters as well as mRNA while integrating all
4 data sets.

Kim-Anh Lê Cao
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Comparisons

Classification error rates on the training set (50 x 5-fold CV)

Left: eNet generally performs better than sPLS-DA; variable
selection overlap ∼ 10-30%

Right: Ensemble performs bettter than sGCC-DA; design matters in
performance; variable selection overlap ∼ 20-50%

Kim-Anh Lê Cao

NETBIO 29-30 Sept 2015



Introduction Multivariate analysis for biological data Integration for multiple data sets Results Conclusions

Comparisons

Performance of sGCC-DA on list of 60 features per ‘omic
Mean classification error rate based on a sGCC-DA model with 3
components and a selection of 20 variables per component∗

(training: 50 x 5-fold cross-validation):

Basal Her2 LumA LumB Overal error rate
Training set 0.00 (0.00) 11.3 (2.17) 7.71(0.84) 49.09 (2.72) 15.01 (0.76)
Test set 3.23 13.51 8.64 58.82 18.50

Similar error rates between training and test set.
LumB subtype difficult to classify. May need to add extra
components in sGCC-DA.

∗ Note: optimal tuning not performed yet

Kim-Anh Lê Cao
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Comparisons

Samples projected in each ’omic subspace spanned by the
components: integration is not an easy task!

Fun part omitted: representing the ellipse from the training set and the test
samples as dots.
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Comparisons

Integrative methods are more efficient at unravelling
associations between variables of different types

Concatenation Ensemble sGCC-DA null design sGCCDA full design
associations 752 458 1,343 1,671

Number of associations are determined as the number of pair-wise
correlation (Pearson) |r | > 0.6.

The total number of selected variables is the same in each method
(∼ 390 features).

Kim-Anh Lê Cao
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Comparisons

Relevance networks based on Pearson’s correlation

Concatenation Ensemble sGCC-DA full design

Network based on circos plot representing only inter
correlations.
Similarities based on components not calculated here (not
feasible with the eNet approach for Concatenation and
Ensemble).

Dr Michael Vacher, The University of Western Australia
Kim-Anh Lê Cao
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Comparisons

Preliminary Gene Ontology analysis on selected features
Lists of 60 genes and 60 proteins selected on the training set
appears the estrogen response pathway.

Known: Estrogen receptor can cause changes in the expression of specific
genes, which can lead to the stimulation of cell growth, particularly in luminal
breast cancers.

In addition,
many oncogenic genes identified in our signatures
mRNAs and proteins part of the estrogen response pathway
are distinct
→ more work to investigate whether those come intra and
extra cellular components across data types

Dr Casey Shannon, PROOF Centre of Excellence, Vancouver, Canada
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It is all about mixOmics

mixOmics is not only an R package, it is also (finally!) part of a
research program!

Website with tutorials
www.mixOmics.org

Most GCCA approaches
recoded, improved and
implemented in the R
package mixOmics

More to come (visualisation,
other super cool features)

Kim-Anh Lê Cao
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To put it in a nutshell

Multivariate linear methods enables to answer a wide range of
biological questions via

data exploration
classification
integration of multiple data sets
variable selection

Coming up in mixOmics:
16S data analysis
Integration of time course data
Meta analysis / multi group analysis
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Questions?

Questions, feedback?

mixomics@math.univ-toulouse.fr

Register to our newsletter for the latest
updates
http://mixomics.org/a-propos/contact-us/

http://www.mixOmics.org
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