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Introduction

Network inference and transcriptomic data

Some practical problems

1 Most of the time we measure the transcription of a mixed population
of cells (having different phenotypes)

2 The number of replicates is often small
I We should restrict ourselves to rather small networks.
I Which genes should we include in the analysis ?

Question

Given a biological network (= given by a biologist), is it possible to recover
it from transcriptomic data alone ?
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Introduction

A well characterized network (La Rota et al. 2011)

Construction of a sepal primordium network

Extensive literature/database search

Expression pattern of different zones of the sepal primordium
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Introduction

A well characterized network (La Rota et al. 2012)

Successive refinement of the network

Coherence with observed expression patterns (zone of the sepal
primordium)
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Introduction

Final network (La Rota et al. 2012)
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Introduction

Matériel utilisé pour l’analyse du transcriptome
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Introduction

3 chambres de cultures et pots différents
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Introduction

Exploratory Analysis

10 samples coming from 3 growing rooms

2 measurements per sample (red, green)

Normalization ?
I Red-Green or Dye-Swapped
I Raw or Centered per array/sample

Further normalization for network inference
I Pearson or Spearman correlation
I Copula or non-paranormal skeptic
I ...

() netbio 2015 9 / 41



Introduction

Some preliminary analysis (on all genes)

Replicates are similar most of the time
Different groups of samples are visible using PCA or clustering...

I They do not correspond to growing rooms
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Introduction

Probe Selection

Map each gene to one probe

Some genes have more than one probe
I Highest quality available
I Highest expression level
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Some network inference approaches

Correlation

Simple correlation

1 Compute the correlation matrix

2 Predict an edge between two genes if their absolute correlation is
above a given threshold

Correlation + hierarchical clustering (hc)

1 Compute the correlation matrix

2 Recover a distance matrix from this correlation matrix

3 Hierarchical clustering

4 For a cut of the tree predict an edge between two genes if they are in
the same cluster

...
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Some network inference approaches Graphical model

Graphical model

Definition

A graphical model gives a graphical (intuitive) representation of the
dependence structure of a probability distribution. It links

1 a random vector X = {X1, . . . ,Xp} with distribution P,
2 a graph G = (P, E) where

I P = {1, . . . , p} is the set of nodes associated to each variable,
I E is a set of edges describing the dependence relationship of X ∼ P.

Conditional independence graph

It is the undirected graph G = {P, E} where

(i , j) /∈ E ⇔ Xi ⊥⊥ Xj |P\{i , j}.
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Some network inference approaches Graphical model

Gaussian Graphical models
Undirected network with Gaussian distribution

X(1) = (X
(1)
1 , ...,X

(1)
p )

X(2) = (X
(2)
1 , ...,X

(2)
p )

...

X(n) = (X
(n)
1 , ...,X

(n)
p )

Inference

i.i.d. sample G = (P, E)

Multivariate Gaussian assumption

Let X ∼ N (0p,Σ) and Θ = Σ−1 the precision matrix.
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Some network inference approaches Graphical model

GGM and partial covariance

Gaussian vector

Suppose X ∼ N (µ,

(
Σab Σba

Σab Σbb

)
), then

1 Xa is Gaussian with distribution N (µa,Σaa)

2 Xa|Xb = x is Gaussian with distribution N (µa|b,Σa|b).

Partial covariance/correlation and conditional independance

Let X ,Y ,Z be real random variables.

cov(X ,Y |Z ) = cov(X ,Y )− cov(X ,Z )cov(Y ,Z )/Var(Z ).

ρXY |Z =
ρXY − ρXZρYZ√

1− ρ2
XZ

√
1− ρ2

YZ

.

When X ,Y ,Z are jointly Gaussian, then

cov(X ,Y |Z ) = 0⇔ cor(X ,Y |Z ) = 0⇔ X ⊥⊥ Y |Z .() netbio 2015 17 / 41



Some network inference approaches Graphical model

Gaussian Graphical Model and covariance selection

Inverse covariance viewpoint

−
Θij√
ΘiiΘjj

= cor
(
Xi ,Xj |XP\i ,j

)
= ρij |P\{i ,j},

Graphical Interpretation

 The matrix Θ = (Θij)i ,j∈P encodes the network G we are looking for.
conditional dependency between Xj and Xi

or
non-null partial correlation between Xj and Xi

m
Θij 6= 0

if and only if
i

j

?

 “covariance” selection
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Some network inference approaches Graphical model

Gaussian Graphical Model and Linear Regression

Linear regression viewpoint

Gene expression Xi is linearly explained by the other genes’:

Xi |X\i = −
∑
j 6=i

Θij

Θii
Xj + εi , εi ∼ N (0, σi ), εi ⊥ X

Conditional on its neighborhood, other profiles do not give additional
insights

Xi |X\i =
∑

j∈neighbors(i)

βjXj + εi with βj = −
Θij

Θii
.

 “Neighborhood” selection
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Some network inference approaches Graphical model

The penalized likelihood approach

Let Θ be the model parameter to infer (related to the edges).

Constraint Optimization approach

Θ̂λ = arg max
Θ

{
log det Θ− trace (SΘ)︸ ︷︷ ︸

∝ log-likelihood

}
s.t.

∑
i>j

Θij 6= 0 ≤ c,

where S = n−1XᵀX.
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Some network inference approaches Graphical model

Gold standard convexified penalized approaches
Use `1 as a proxy fot the `0

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008)
Θ̂λ = arg max

Θ∈S+

`(Θ; X)− λ‖Θ‖1

+ symmetric, positive-definite

− solved by the “Graphical-Lasso” (O(p3), Friedman et al, 2007).

Neighborhood Selection (Meinshausen & Bülhman, 2006)
β̂

(i)
= arg min

β∈Rp−1

1

n

∥∥Xi − X\i β
∥∥2

2
+ λ ‖β‖1

CLIME – Pseudo-likelihood (Cai et al., 2011; Yuan, 2010)
Θ̂ = arg min

Θ
‖Θ‖1 subjected to

∥∥n−1XtXΘ− I
∥∥
∞ ≤ λ
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Θ̂ = arg min

Θ
‖Θ‖1 subjected to

∥∥n−1XtXΘ− I
∥∥
∞ ≤ λ

− not positive-definite

+ p linear programs easily distributed (O(p2d) for d neighbors).
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Some network inference approaches Graphical model

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote d = maxj∈P(degreej). Consistency for an appropriate λ and

n ≈ O(d2 log(p)) for the graphical Lasso and Clime.

n ≈ O(d log(p)) for neighborhood selection (sharp).

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with d-sparse models: useless when

d log(p/d)

n
≥ 1/2, (e.g., n = 50, p = 200, d ≥ 8).

What about Count data/non Gaussian distribution

Can be handled after data transformation (“skeptic” by Wasserman et al.,
package huge).
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Some network inference approaches Tree-structured Graphical Models

Tree-structured Graphical Models

π

G

Y

G = (V ,EG ) decomposable graph

Y1

Y2

Y4

Y3

Y5

Y6

Y7

Y8

G = { decomposable graphs }

π distribution for Y
Markov w.r.t. G

{i , j} /∈ EG ⇔ Yi ⊥⊥ Yj |YV \{i ,j}
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Some network inference approaches Tree-structured Graphical Models

Tree-structured Graphical Models

π

T

Y

T = (V ,ET ) spanning tree

Y1

Y2

Y4

Y3

Y5

Y6

Y7

Y8

T = { spanning trees }

π distribution for Y
Markov w.r.t. T

{i , j} /∈ ET ⇔ Yi ⊥⊥ Yj |YV \{i ,j}
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Some network inference approaches Tree-structured Graphical Models

Tree-structured Graphical Models

π

T

Y

T ∼ U(T )

π|T ∼ ρ
Y|π ∼ π

π ρ
Multinomial Dirichlet

Gaussian normal-Wishart
for (µ,Λ)

Copula U([−1, 1])
for the entries of

the precision matrix
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Some network inference approaches Tree-structured Graphical Models

Posterior Edge Probabilities

p({i , j} ∈ ET |Y) =
∑
T∈T

T3{i ,j}

p(T |Y)

Easily computed thanks to an algebra result called the Matrix-Tree if
ρ has some Markov property

B Complexity O(p3)
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Some network inference approaches Tree-structured Graphical Models

ROC curves

For a given threshold (λ, correlation, ...) we can compute the table

Edges None-Edges

Pred. edges True Positive False Positive

Pred. none-edges . .

I TPR : TP / (Number of true edges)
I FPR : FP / (Number of none-edges)

Compute the TPR and FPR for various
thresholds

Draw the TPR as a function of FPR
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Some results

Performances as a function of the number of samples
Dye-swapped and mean centered

Pearson correlation
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Some results

Performances as a function of the number of samples
Dye-swapped and mean centered

Spearman + Glasso
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Some results

Performances as a function of the number of samples

Conclusion

We recover part of the network !
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Some results

Performances as a function of the normalization

Pearson Correlation
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Some results

Performances as a function of the normalization

Spearman + GLasso
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Some results

Performances as a function of the normalization

Conclusion

Normalization counts

Raw and red-green ?

() netbio 2015 34 / 41



Some results

Performances as a function of the transformation
red-green and raw

Correlation
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Some results

Performances as a function of the transformation

Conclusion

It seems important to transform the data

Non-paranormal skeptic + correlation ?
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Some results

Influence of the difficulty level
dye-swapped mean centered (spearman, glasso+spearman, tree+copula)
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Some results

Influence of the difficulty level
red-green and raw (npn.cor, glasso+npn.cor, tree+copula)
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Some results

Influence of the difficulty level

Conclusion

Results are worst when considering more genes
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Conclusion

Conclusion

Conclusion

We recover at least part of the network

More samples leads to better results

Some normalizations and transformations seem to work better

To do

Infer the network using none-dedicated data

More approaches (prior) ?

Questions?

Raw and red-green

Non-paranormal skeptic + cor
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