Inferring a biological network from transcriptomic data ?

J. Chiquet, M-L Martin-Magniette, F. Monéger, G. Rigaill, L. Schwaller

netbio 2015

Outline

Introduction

Some network inference approaches

- Graphical model
- Tree-structured Graphical Models

3 Some results

4 Conclusion

Network inference and transcriptomic data

Some practical problems

- Most of the time we measure the transcription of a mixed population of cells (having different phenotypes)
- 2 The number of replicates is often small
 - We should restrict ourselves to rather small networks.
 - Which genes should we include in the analysis ?

Question

Given a biological network (= given by a biologist), is it possible to recover it from transcriptomic data alone ?

A well characterized network (La Rota et al. 2011)

Construction of a sepal primordium network

- Extensive literature/database search
- Expression pattern of different zones of the sepal primordium

	Zone 1	Zone 2	Zone 3	
	Adaxial	Vascular	Abaxial	
AGO1	1	1	1	
AGO10	1	0	0	
AGO7	1	0	0	
ANT	1	1	1	
ARF4	0	1	1	
AS1	1	1	0	XX
AS2	1	0	0	
ETT	0	1	1	
FIL	0	1	ĩ	
KAN1	0	0	1	FUT.
MiR165/166	0	1	1	
MiR390	1	1	1	
REV	1	0	0	
TAS3	1	0	0	

Introduction

A well characterized network (La Rota et al. 2012)

- Successive refinement of the network
- Coherence with observed expression patterns (zone of the sepal primordium)

Final network (La Rota et al. 2012)

Matériel utilisé pour l'analyse du transcriptome

3 chambres de cultures et pots différents

4 plantes/pot

1 plante/pot

Chambre de culture	T°(J/N)	H°(J/N)	Photopériode (J/N)	
Madrid	21°/17°	50-65%	16h/8h	1, 2, 3 /
Reyjavik	16°	70%	24h	4, 5, 6 —
Berlin	21°/17°	50-65%	16h/8h	7, 8, 9, 10

10 échantillons (répliques biologiques) Numérotés de 1 à 10

Exploratory Analysis

- 10 samples coming from 3 growing rooms
- 2 measurements per sample (red, green)
- Normalization ?
 - Red-Green or Dye-Swapped
 - Raw or Centered per array/sample
- Further normalization for network inference
 - Pearson or Spearman correlation
 - Copula or non-paranormal skeptic

▶ ...

Some preliminary analysis (on all genes)

- Replicates are similar most of the time
- Different groups of samples are visible using PCA or clustering...
 - They do not correspond to growing rooms

Individuals factor map (PCA)

Probe Selection

- Map each gene to one probe
- Some genes have more than one probe
 - Highest quality available
 - Highest expression level

Outline

Introduction

- Graphical model
- Tree-structured Graphical Models

3 Some results

4 Conclusion

Correlation

Simple correlation

- Ompute the correlation matrix
- Predict an edge between two genes if their absolute correlation is above a given threshold

Correlation + hierarchical clustering (hc)

- Ompute the correlation matrix
- 2 Recover a distance matrix from this correlation matrix
- Ilierarchical clustering
- For a cut of the tree predict an edge between two genes if they are in the same cluster

Outline

Introduction

2 Some network inference approaches

- Graphical model
- Tree-structured Graphical Models

3 Some results

4 Conclusion

Definition

A graphical model gives a graphical (intuitive) representation of the dependence structure of a probability distribution. It links

- **Q** a random vector $X = \{X_1, \ldots, X_p\}$ with distribution \mathbb{P} ,
- 2) a graph $\mathcal{G} = (\mathcal{P}, \mathcal{E})$ where
 - $\mathcal{P} = \{1, \dots, p\}$ is the set of nodes associated to each variable,
 - ${\mathcal E}$ is a set of edges describing the dependence relationship of $X\sim {\mathbb P}.$

Conditional independence graph

It is the undirected graph $\mathcal{G} = \{\mathcal{P}, \mathcal{E}\}$ where

$$(i,j) \notin \mathcal{E} \Leftrightarrow X_i \perp X_j | \mathcal{P} \setminus \{i,j\}.$$

Gaussian Graphical models

Undirected network with Gaussian distribution

Multivariate Gaussian assumption

Let $\mathbf{X} \sim \mathcal{N}(\mathbf{0}_{p}, \mathbf{\Sigma})$ and $\mathbf{\Theta} = \mathbf{\Sigma}^{-1}$ the precision matrix.

GGM and partial covariance

Gaussian vector

Suppose
$$X \sim \mathcal{N}(\boldsymbol{\mu}, \begin{pmatrix} \Sigma_{ab} & \Sigma_{ba} \\ \Sigma_{ab} & \Sigma_{bb} \end{pmatrix})$$
, then

() X_a is Gaussian with distribution $\mathcal{N}(\mu_a, \Sigma_{aa})$

2 $X_a|X_b = x$ is Gaussian with distribution $\mathcal{N}(\mu_{a|b}, \Sigma_{a|b})$.

Partial covariance/correlation and conditional independance

Let X, Y, Z be real random variables.

$$\operatorname{cov}(X, Y|Z) = \operatorname{cov}(X, Y) - \operatorname{cov}(X, Z) \operatorname{cov}(Y, Z) / \operatorname{Var}(Z)$$

$$\rho_{XY|Z} = \frac{\rho_{XY} - \rho_{XZ}\rho_{YZ}}{\sqrt{1 - \rho_{XZ}^2}\sqrt{1 - \rho_{YZ}^2}}$$

When X, Y, Z are jointly Gaussian, then

Gaussian Graphical Model and covariance selection

Inverse covariance viewpoint

$$\frac{\Theta_{ij}}{\sqrt{\Theta_{ii}\Theta_{jj}}} = \operatorname{cor}\left(X_i, X_j | X_{\mathcal{P} \setminus i, j}\right) = \rho_{ij|\mathcal{P} \setminus \{i, j\}},$$

Graphical Interpretation

 \rightsquigarrow The matrix $\mathbf{\Theta} = (\Theta_{ij})_{i,j \in \mathcal{P}}$ encodes the network \mathcal{G} we are looking for.

→ "covariance" selection

Gaussian Graphical Model and Linear Regression

Linear regression viewpoint

Gene expression X_i is linearly explained by the other genes':

$$X_i|X_{\setminus i} = -\sum_{j \neq i} rac{\Theta_{ij}}{\Theta_{ii}} X_j + arepsilon_i, \quad arepsilon_i \sim \mathcal{N}(0, \sigma_i), \quad arepsilon_i \perp X_i)$$

Conditional on its neighborhood, other profiles do not give additional insights

$$X_i | X_{\setminus i} = \sum_{j \in \mathsf{neighbors}(i)} \beta_j X_j + \varepsilon_i \quad \text{with } \beta_j = -\frac{\Theta_{ij}}{\Theta_{ii}}.$$

 \rightsquigarrow "Neighborhood" selection

The penalized likelihood approach

Let Θ be the model parameter to infer (related to the edges).

$$\hat{\boldsymbol{\Theta}}_{\lambda} = \arg \max_{\boldsymbol{\Theta}} \left\{ \underbrace{\log \det \boldsymbol{\Theta} - \operatorname{trace} \left(\mathbf{S} \boldsymbol{\Theta} \right)}_{\alpha \text{ log-likelihood}} \right\} \quad \text{s.t.} \quad \sum_{i>j} \boldsymbol{\Theta}_{ij} \neq 0 \leq c,$$

where $\mathbf{S} = n^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{X}$.

Gold standard convexified penalized approaches Use ℓ_1 as a proxy fot the ℓ_0

Penalized likelihood (Banerjee *et al.*, Yuan and Lin, 2008) $\hat{\boldsymbol{\Theta}}_{\lambda} = \arg \max \ell(\boldsymbol{\Theta}; \boldsymbol{X}) - \lambda \|\boldsymbol{\Theta}\|_{1}$ $\Theta \in \mathbb{S}_{\perp}$

- symmetric, positive-definite
- solved by the "Graphical-Lasso" ($\mathcal{O}(p^3)$, Friedman et al, 2007).

Neighborhood Selection (Meinshausen & Bülhman, 2006) $\widehat{\boldsymbol{\beta}}^{(i)} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p-1}}{\arg \min} \frac{1}{n} \| \mathbf{X}_i - \mathbf{X}_{\setminus i} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1$

 $\widehat{\Theta} = \arg \min \|\Theta\|_1$ subjected to $\|n^{-1} \mathbf{X}^t \mathbf{X} \Theta - \mathbf{I}\|_{\infty} \leq \lambda$

Gold standard convexified penalized approaches Use ℓ_1 as a proxy fot the ℓ_0

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008) $\hat{\boldsymbol{\Theta}}_{\lambda} = \arg \max \ell(\boldsymbol{\Theta}; \boldsymbol{X}) - \lambda \|\boldsymbol{\Theta}\|_{1}$ $\Theta \in \mathbb{S}_+$

Neighborhood Selection (Meinshausen & Bülhman, 2006) $\widehat{\boldsymbol{\beta}}^{(i)} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p-1}}{\arg \min} \frac{1}{n} \| \mathbf{X}_i - \mathbf{X}_{i} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1$

not symmetric, not positive-definite

p Lasso solved with Lars-like algorithms ($\mathcal{O}(npd)$ for d neighbors).

 $\widehat{\Theta} = \arg \min \|\Theta\|_1$ subjected to $\|n^{-1} \mathbf{X}^t \mathbf{X} \Theta - \mathbf{I}\|_1 \le \lambda$

Gold standard convexified penalized approaches Use ℓ_1 as a proxy fot the ℓ_0

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008) $\hat{\boldsymbol{\Theta}}_{\lambda} = \arg \max \ell(\boldsymbol{\Theta}; \boldsymbol{X}) - \lambda \|\boldsymbol{\Theta}\|_{1}$ $\Theta \in \mathbb{S}_+$

Neighborhood Selection (Meinshausen & Bülhman, 2006) $\widehat{\boldsymbol{\beta}}^{(i)} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p-1}}{\arg \min} \frac{1}{n} \| \mathbf{X}_i - \mathbf{X}_{i} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1$

CLIME – Pseudo-likelihood (Cai et al., 2011; Yuan, 2010) $\widehat{\Theta} = \arg \min \|\Theta\|_1$ subjected to $\|n^{-1} \mathbf{X}^t \mathbf{X} \Theta - \mathbf{I}\|_{\infty} \le \lambda$ Θ

not positive-definite

+ p linear programs easily distributed ($\mathcal{O}(p^2d)$ for d neighbors).

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote $d = \max_{j \in \mathcal{P}} (\text{degree}_j)$. Consistency for an appropriate λ and

- $n \approx \mathcal{O}(d^2 \log(p))$ for the graphical Lasso and Clime.
- $n \approx \mathcal{O}(d \log(p))$ for neighborhood selection (sharp).

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with *d*-sparse models: useless when

$$\frac{d\log(p/d)}{n} \ge 1/2, \qquad (\text{e.g.}, n = 50, p = 200, d \ge 8).$$

What about Count data/non Gaussian distribution

Can be handled after data transformation ("skeptic" by Wasserman et al., package huge).

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote $d = \max_{j \in \mathcal{P}} (\text{degree}_j)$. Consistency for an appropriate λ and

- $n \approx \mathcal{O}(d^2 \log(p))$ for the graphical Lasso and Clime.
- $n \approx \mathcal{O}(d \log(p))$ for neighborhood selection (sharp).

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with *d*-sparse models: useless when

$$\frac{d\log(p/d)}{n} \ge 1/2,$$
 (e.g., $n = 50, p = 200, d \ge 8$).

What about Count data/non Gaussian distribution

Can be handled after data transformation ("skeptic" by Wasserman et al., package huge).

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote $d = \max_{j \in \mathcal{P}} (\text{degree}_j)$. Consistency for an appropriate λ and

- $n \approx \mathcal{O}(d^2 \log(p))$ for the graphical Lasso and Clime.
- $n \approx \mathcal{O}(d \log(p))$ for neighborhood selection (sharp).

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with *d*-sparse models: useless when

$$\frac{d \log(p/d)}{n} \ge 1/2,$$
 (e.g., $n = 50, p = 200, d \ge 8$).

What about Count data/non Gaussian distribution

Can be handled after data transformation ("skeptic" by Wasserman et al., package huge).

Outline

Introduction

- Some network inference approaches
 Graphical model
 - Tree-structured Graphical Models

3 Some results

4 Conclusion

Tree-structured Graphical Models

 $\mathcal{G} = \{ \text{ decomposable graphs } \}$

• π distribution for **Y Markov** w.r.t. *G*

 $\{i,j\} \notin E_G \Leftrightarrow Y_i \perp Y_j | Y_{V \setminus \{i,j\}}$

Tree-structured Graphical Models

 $\mathcal{T} = \{ \text{ spanning trees } \}$

• π distribution for **Y** Markov w.r.t. *T*

 $\{i,j\} \notin E_T \Leftrightarrow Y_i \perp Y_j | Y_{V \setminus \{i,j\}}$

Tree-structured Graphical Models

 $T \sim \mathcal{U}(\mathcal{T})$ $\pi | T \sim \rho$ $\mathbf{Y} | \pi \sim \pi$

 $\begin{array}{c|c} \pi & \rho \\ \mbox{Multinomial} & \mbox{Dirichlet} \\ \mbox{Gaussian} & \mbox{normal-Wishart} \\ \mbox{for } (\mu, \Lambda) \\ \mbox{Copula} & \mbox{} \mathcal{U}([-1, 1]) \\ \mbox{for the entries of} \\ \mbox{the precision matrix} \\ \end{array}$

Posterior Edge Probabilities

$$p(\{i,j\} \in E_T | \mathbf{Y}) = \sum_{\substack{T \in \mathcal{T} \\ T \ni \{i,j\}}} p(T | \mathbf{Y})$$

• Easily computed thanks to an algebra result called the Matrix-Tree if ρ has some Markov property

 \triangleright Complexity $\mathcal{O}(p^3)$

ROC curves

• For a given threshold (λ , correlation, ...) we can compute the table

	Edges	None-Edges
Pred. edges	True Positive	False Positive
Pred. none-edges		

- TPR : TP / (Number of true edges)
- FPR : FP / (Number of none-edges)

- Compute the TPR and FPR for various thresholds
- Draw the TPR as a function of FPR

Outline

Introduction

- Some network inference approaches
 - Graphical model
 - Tree-structured Graphical Models

3 Some results

Performances as a function of the number of samples

Dye-swapped and mean centered

Pearson correlation

• Spearman correlation

Performances as a function of the number of samples

Dye-swapped and mean centered

• Spearman + Glasso

• Copula + Tree

. . .

Performances as a function of the number of samples

Conclusion

• We recover part of the network !

Performances as a function of the normalization

• Spearman Correlation

Performances as a function of the normalization

. . .

Performances as a function of the normalization

Conclusion

- Normalization counts
- Raw and red-green ?

Performances as a function of the transformation

red-green and raw

Correlation

GLasso

Performances as a function of the transformation

Conclusion

- It seems important to transform the data
- Non-paranormal skeptic + correlation ?

Influence of the difficulty level

dye-swapped mean centered (spearman, glasso+spearman, tree+copula)

Influence of the difficulty level

red-green and raw (npn.cor, glasso+npn.cor, tree+copula)

Influence of the difficulty level

Conclusion

• Results are worst when considering more genes

Outline

Introduction

- Graphical model
- Tree-structured Graphical Models

3 Some results

Conclusion

Conclusion

- We recover at least part of the network
- More samples leads to better results
- Some normalizations and transformations seem to work better

To do

- Infer the network using none-dedicated data
- More approaches (prior) ?

Questions?

- Raw and red-green
- Non-paranormal skeptic + cor