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Introduction

Network inference and transcriptomic data

Some practical problems
© Most of the time we measure the transcription of a mixed population
of cells (having different phenotypes)
@ The number of replicates is often small

We should restrict ourselves to rather small networks.
Which genes should we include in the analysis ?

Question

Given a biological network (= given by a biologist), is it possible to recover
it from transcriptomic data alone ?
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A well characterized network (La Rota et al. 2011)

Construction of a sepal primordium network
e Extensive literature/database search
@ Expression pattern of different zones of the sepal primordium
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A well characterized network (La Rota et al. 2012)

@ Successive refinement of the network

@ Coherence with observed expression patterns (zone of the sepal
primordium)

= direct interaction
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Introduction

Final network (La Rota et al. 2012)




Introduction

Matériel utilisé pour I'analyse du transcriptome

3 inflorescences = 1 échantillon

sépale au stade 3 l
l extraction d'ARN
réseau de La Rota et al, 2011 '

analyse transcriptome
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Introduction

3 chambres de cultures et pots différents

4 plantes/pot 1 plante/pot
Chambre de T°(J/N) H°()/N) Photopériode i
culture /Ny ‘ )
Madrid 21°/17° 50-65% 16h/8h 1,23 /
Reyjavik 16° 70% 24h 4,56 —
Berlin 21°/17° 50-65% 16h/8h

7,8,
10 échantillons (répliques biologiques) :
Numérotés de 1 a 10

P
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Exploratory Analysis

10 samples coming from 3 growing rooms

2 measurements per sample (red, green)

@ Normalization ?

> Red-Green or Dye-Swapped

» Raw or Centered per array/sample
Further normalization for network inference

» Pearson or Spearman correlation
» Copula or non-paranormal skeptic
> .
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Introduction

Some preliminary analysis (on all genes)

@ Replicates are similar most of the time
@ Different groups of samples are visible using PCA or clustering...
» They do not correspond to growing rooms

Individuals factor map (PCA)
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Probe Selection

@ Map each gene to one probe
@ Some genes have more than one probe

» Highest quality available
» Highest expression level

s 2005
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Some network inference approaches

Correlation

Simple correlation
©@ Compute the correlation matrix

@ Predict an edge between two genes if their absolute correlation is
above a given threshold

Correlation + hierarchical clustering (hc)
©@ Compute the correlation matrix
@ Recover a distance matrix from this correlation matrix
© Hierarchical clustering

@ For a cut of the tree predict an edge between two genes if they are in
the same cluster
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Some network inference approaches BEE]oi{e=|Nyiele (5]

Graphical model

Definition
A graphical model gives a graphical (intuitive) representation of the
dependence structure of a probability distribution. It links
@ a random vector X = {Xi,..., X} with distribution PP,
@ a graph G = (P, &) where
P ={1,...,p} is the set of nodes associated to each variable,
€ is a set of edges describing the dependence relationship of X ~ P.

v

Conditional independence graph
It is the undirected graph G = {P,E} where

(i,J) ¢ € = Xi L Xi|P\{i,j}-
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Some network inference approaches BEE]oi{e=|Nyitele (S}

Gaussian Graphical models

Undirected network with Gaussian distribution

~
X0 = (x, . xV) Vs —
x@ = (x®, ... x?) m < / \
X = (x| . x{M) — > e
i.i.d. sample G=(P,¢)
Multivariate Gaussian assumption
Let X ~ N(0,,X) and © = ¥ ! the precision matrix. J
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Some network inference approaches BEETl =N Lele[H]

GGM and partial covariance

Gaussian vector

Suppose X ~ N (u, (gaz EZZ)), then
a

@ X, is Gaussian with distribution N (p,, X2,)
Q@ Xu|Xp = x is Gaussian with distribution N'(gt,p, Za|p)-

Partial covariance/correlation and conditional independance

Let X, Y, Z be real random variables.
cov(X, Y|Z) = cov(X,Y) — cov(X, Z)cov(Y, Z)/Var(Z).

_ PXY — PXZPYZ
Pxy|z = > S
\/l_pXZ\/l_pYZ

When X, Y, Z are jointly Gaussian, then
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Some network inference approaches BEE]oi{e=|Nyitele (S}

Gaussian Graphical Model and covariance selection

Inverse covariance viewpoint

O
- \/#@JJ = = cor (Xi, Xj|Xp\ij) = pijip\{ii-

Graphical Interpretation

~+ The matrix @ = (©j;); jep encodes the network G we are looking for.

conditional dependency between X; and X;

? ; or
- if and only if non-null partial correlation between X; and X;
J )’

©; #0

~~ “covariance” selection
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Some network inference approaches BEE]oi{e=|Nyiele (5]

Gaussian Graphical Model and Linear Regression

Linear regression viewpoint
Gene expression X; is linearly explained by the other genes':

S
Xi| X = — Z @—{><j +ei, ei~N(0,0), & LX
i# "
Conditional on its neighborhood, other profiles do not give additional
insights

. O;
X,'lX\,- = E ,81)9 +&;  with ﬁj = __@J
ji

JEneighbors(i)

~> "“Neighborhood" selection
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The penalized likelihood approach

Let © be the model parameter to infer (related to the edges).

Constraint Optimization approach

A

O, =arg m(gx{ logdet® — trace(S@)/} s.t. ZG)U #0<c,

i>j

o log-likelihood

where S = n71XTX.
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Some network inference approaches BEE]oi{e=|Nyitele (S}

Gold standard convexified penalized approaches
Use /1 as a proxy fot the 4

Penalized likelihood A(Banerjee et al., Yuan and Lin, 2008)
0O, = arg max /(0O; X) — \||O|1 J
(SIS

+ symmetric, positive-definite
— solved by the “Graphical-Lasso” (O(p3), Friedman et al, 2007).
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Gold standard convexified penalized approaches
Use /1 as a proxy fot the 4

Penalized likelihood A(Banerjee et al., Yuan and Lin, 2008)
0O, = arg max /(0O; X) — \[|O||;
o

(S

Neighborhood Sf(l_ection (Meinfhausen & Biilhman, 2006)

= arg min — || X; — X\iﬁ“i + AllB8lly

BeRp—1 1

— not symmetric, not positive-definite

+ p Lasso solved with Lars-like algorithms (O(npd) for d neighbors).
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Some network inference approaches BEE]oi{e=|Nyitele (S}

Gold standard convexified penalized approaches
Use /1 as a proxy fot the 4

Penalized likelihood A(Banerjee et al., Yuan and Lin, 2008)
0O, = arg max /(0O; X) — \[|O||;

(SIS

Neighborhood Sf(l_ection (Meinfhausen & Biilhman, 2006)

= arg mi —HX,‘—X\,‘BHE‘F)‘HBM
BeRrp—1 N

CLIME —_Pseudo-likelihood (Cai et al., 2011; Yuan, 2010)
© = arg min [|©||; subjected to |[n TX'XO — || < A
e

— not positive-definite

+ p linear programs easily distributed (O(p?d) for d neighbors).

netbio 2015 21 / 41



g il
Practical implications of theoretical results
Selection consistency (Ravikumar, Wainwright, 2009-2012)
Denote d = max;cp(degree;). Consistency for an appropriate A and

o n =~ O(d?log(p)) for the graphical Lasso and Clime.
e n~ O(dlog(p)) for neighborhood selection (sharp).
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Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)
Denote d = max;cp(degree;). Consistency for an appropriate A and
o n =~ O(d?log(p)) for the graphical Lasso and Clime.
e n~ O(dlog(p)) for neighborhood selection (sharp).

Ultra high-dimension phenomenon (Verzelen, 2011)
Minimax risk for sparse regression with d-sparse models: useless when

dlog(p/d)

. >1/2, (e.g.,n=150,p =200,d > 8).

netbio 2015

22 /41



gl il
Practical implications of theoretical results
Selection consistency (Ravikumar, Wainwright, 2009-2012)
Denote d = max;cp(degree;). Consistency for an appropriate A and

o n =~ O(d?log(p)) for the graphical Lasso and Clime.
e n~ O(dlog(p)) for neighborhood selection (sharp).

Ultra high-dimension phenomenon (Verzelen, 2011)
Minimax risk for sparse regression with d-sparse models: useless when

dlog(p/d)

. >1/2, (e.g.,n=150,p =200,d > 8).

What about Count data/non Gaussian distribution

Can be handled after data transformation (“skeptic” by Wasserman et al.,
package huge).

v
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Tree-structured Graphical Models

e G = (V, Eg) decomposable graph

G = { decomposable graphs }

@ 7 distribution for Y

@ Markov w.r.t. G

{i,j} ¢ Ec & Yi L Yj|[YWniijy
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U SISz G iz il
Tree-structured Graphical Models

o T = (V, Er) spanning tree

T = { spanning trees }

@ 7 distribution for Y

@ Markov w.r.t. T

{i,j} ¢ ET Vi L Yj|YWn(ij
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S ST ITIENICIET OB S Tree-structured Graphical Models

Tree-structured Graphical Models

T ~U(T)
w|T ~p

Y|r~7

T
Multinomial

Gaussian

@ Copula

p
Dirichlet

normal-Wishart
for (11, \)

U([-1,1])

for the entries of

the precision matrix

netbio 2015
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S ST ITIENICIET OB S Tree-structured Graphical Models

Posterior Edge Probabilities

p({i,j} € Er[Y)= > p(T|Y)
TeT
T>{ij}

o Easily computed thanks to an algebra result called the Matrix-Tree if
p has some Markov property

> Complexity O(p3)
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S ST ITIENICIET OB S Tree-structured Graphical Models

ROC curves

e For a given threshold (), correlation, ...

) we can compute the table

Edges

None-Edges

Pred. edges

True Positive

False Positive

Pred. none-edges

» TPR : TP / (Number of true edges)
» FPR : FP / (Number of none-edges)

@ Compute the TPR and FPR for various

thresholds

@ Draw the TPR as a function of FPR

PR

93 04 05 05 o
FPR or (1 - specifcty)

s 2005
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Some results

Performances as a function of the number of samples
Dye-swapped and mean centered

@ Pearson correlation @ Spearman correlation

100-
07
method method
— sample_5 — sample_s
— sample_6 — sample_s
x . — sample_7 « g
£o % Eoso- — sample_7
— Sample_8 — sample_8
— sample_9 — sample_s
~— sample_10 ~— Sample_10
02 0.25-
000
2 050 075 100 000 025 050 o 100
FPR FPR
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Some results

Performances as a function of the number of samples

Dye-swapped and mean centered

@ Spearman + Glasso o Copula + Tree

TPR
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Some results

Performances as a function of the number of samples

@ We recover part of the network !

Conclusion J




Some results

Performances as a function of the normalization

@ Pearson Correlation

method

— raw.redgreen

TPR

~— meanCenter dyeswapped

@ Spearman Correlation

TPR

— raw.dyeswapped
— meanCenter redgreen
~— meanCenter.dyeswapped
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Some results

Performances as a function of the normalization

Spearman + Glasso

Copula + Tree

100 100 i
o 075
method method
— rawredgre — rawredgreen
E 050 — raw.dyeswapped E 050 — raw.dyeswapped
— meanCenterredgreen — meanCenter edgreen
~—— meanCenter.dyeswapped ~—— meanCenter.dyeswapped
02 025
000 000
000 o5 050 ofs 100 000 oks 050 ofs 100
FPR FPR



Some results

Performances as a function of the normalization

Conclusion
@ Normalization counts

e Raw and red-green ?




Some results

Performances as a function of the transformation

red-green and raw

Correlation @ Glasso

100 100
075 075
method method
~— pearson — glasso.scaled
o = o —
Eoso- spearman Eoso- glasso scaled spearman
— opn — glasso.scaled.npn
— npn.cor — glasso.scaled.npn.cor
025- 025
000 000
000 025 050 075 100 000 025 050 075 100
FPR FPR



Some results

Performances as a function of the transformation

Conclusion
@ It seems important to transform the data

@ Non-paranormal skeptic + correlation 7




Some results

Influence of the difficulty level

dye-swapped mean centered (spearman, glasso+spearman, tree+copula)

8 samples 9 samples 10 samples
- |
) £oo] T
o0 -
O |
™ £ =
L |
netbio 2015
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Some results

Influence of the difficulty level

red-green and raw (npn.cor, glasso+npn.cor, tree-+copula)

8 samples 9 samples 10 samples
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Some results

Influence of the difficulty level

Conclusion J

@ Results are worst when considering more genes
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Conclusion

Conclusion

Conclusion
@ We recover at least part of the network

@ More samples leads to better results

@ Some normalizations and transformations seem to work better

To do
@ Infer the network using none-dedicated data

@ More approaches (prior) ?

Questions?
@ Raw and red-green

@ Non-paranormal skeptic + cor

netbio 2015

41/ 41



	Introduction
	Some network inference approaches
	Graphical model
	Tree-structured Graphical Models

	Some results
	Conclusion

