Inferring a biological network from transcriptomic data ?

J. Chiquet, M-L Martin-Magniette, F. Monéger, G. Rigaill, L. Schwaller

netbio 2015

Outline

1 [Introduction](#page-1-0)

[Some network inference approaches](#page-11-0)

- **[Graphical model](#page-13-0)**
- **[Tree-structured Graphical Models](#page-26-0)**

[Some results](#page-32-0)

[Conclusion](#page-44-0)

Network inference and transcriptomic data

Some practical problems

- **1** Most of the time we measure the transcription of a mixed population of cells (having different phenotypes)
- **2** The number of replicates is often small
	- We should restrict ourselves to rather small networks.
	- Which genes should we include in the analysis?

Question

Given a biological network $(=$ given by a biologist), is it possible to recover it from transcriptomic data alone ?

A well characterized network (La Rota et al. 2011)

Construction of a sepal primordium network

- **•** Extensive literature/database search
- Expression pattern of different zones of the sepal primordium

[Introduction](#page-4-0)

A well characterized network (La Rota et al. 2012)

- **•** Successive refinement of the network
- Coherence with observed expression patterns (zone of the sepal primordium)

Final network (La Rota et al. 2012)

Matériel utilisé pour l'analyse du transcriptome

3 chambres de cultures et pots différents

4 plantes/pot

1 plante/pot

10 échantillons (répliques biologiques) Numérotés de 1 à 10

Information (State

Exploratory Analysis

- 10 samples coming from 3 growing rooms
- 2 measurements per sample (red, green)
- Normalization ?
	- ► Red-Green or Dye-Swapped
	- \blacktriangleright Raw or Centered per array/sample
- **•** Further normalization for network inference
	- ▶ Pearson or Spearman correlation
	- \triangleright Copula or non-paranormal skeptic
	- ^I ...

Some preliminary analysis (on all genes)

- Replicates are similar most of the time
- Different groups of samples are visible using PCA or clustering...
	- \triangleright They do not correspond to growing rooms

Individuals factor map (PCA)

Probe Selection

- Map each gene to one probe
- • Some genes have more than one probe
	- \blacktriangleright Highest quality available
	- \blacktriangleright Highest expression level

Outline

[Introduction](#page-1-0)

- 2 [Some network inference approaches](#page-11-0)
	- [Graphical model](#page-13-0)
	- **[Tree-structured Graphical Models](#page-26-0)**

[Some results](#page-32-0)

[Conclusion](#page-44-0)

Correlation

Simple correlation

- **1** Compute the correlation matrix
- 2 Predict an edge between two genes if their absolute correlation is above a given threshold

Correlation $+$ hierarchical clustering (hc)

- **1** Compute the correlation matrix
- Recover a distance matrix from this correlation matrix
- **3** Hierarchical clustering
- ⁴ For a cut of the tree predict an edge between two genes if they are in the same cluster

...

Outline

[Introduction](#page-1-0)

2 [Some network inference approaches](#page-11-0) **•** [Graphical model](#page-13-0)

• [Tree-structured Graphical Models](#page-26-0)

[Some results](#page-32-0)

[Conclusion](#page-44-0)

Graphical model

Definition

A graphical model gives a graphical (intuitive) representation of the dependence structure of a probability distribution. It links

1 a random vector $X = \{X_1, \ldots, X_p\}$ with distribution \mathbb{P} ,

2 a graph
$$
\mathcal{G} = (\mathcal{P}, \mathcal{E})
$$
 where

- $P = \{1, \ldots, p\}$ is the set of nodes associated to each variable,
- **I** E is a set of edges describing the dependence relationship of $X \sim \mathbb{P}$.

Conditional independence graph

It is the undirected graph $\mathcal{G} = \{P, \mathcal{E}\}\$ where

$$
(i,j)\notin\mathcal{E}\Leftrightarrow X_i\perp\!\!\!\perp X_j|\mathcal{P}\backslash\{i,j\}.
$$

Gaussian Graphical models

Undirected network with Gaussian distribution

Multivariate Gaussian assumption

Let $\mathsf{X} \sim \mathcal{N}(\mathbf{0}_\rho, \mathsf{\Sigma})$ and $\mathsf{\Theta} = \mathsf{\Sigma}^{-1}$ the precision matrix.

GGM and partial covariance

Gaussian vector

Suppose
$$
X \sim \mathcal{N}(\boldsymbol{\mu}, \begin{pmatrix} \sum_{ab} & \sum_{ba} \\ \sum_{ab} & \sum_{bb} \end{pmatrix})
$$
, then

 \bullet $X_{\scriptscriptstyle\cal a}$ is Gaussian with distribution ${\cal N}(\boldsymbol\mu_{\scriptscriptstyle\cal a}, \boldsymbol\Sigma_{\scriptscriptstyle\cal a\boldsymbol a})$

 2 $X_{\mathsf{a}} | X_{\mathsf{b}} = x$ is Gaussian with distribution $\mathcal{N}(\boldsymbol{\mu}_{\mathsf{a} | \mathsf{b}}, \boldsymbol{\Sigma}_{\mathsf{a} | \mathsf{b}}).$

Partial covariance/correlation and conditional independance

Let X, Y, Z be real random variables.

$$
cov(X, Y|Z) = cov(X, Y) - cov(X, Z) cov(Y, Z)/Var(Z).
$$

$$
\rho_{XY|Z} = \frac{\rho_{XY} - \rho_{XZ}\rho_{YZ}}{\sqrt{1 - \rho_{XZ}^2}\sqrt{1 - \rho_{YZ}^2}}.
$$

When X, Y, Z are jointly Gaussian, then

Gaussian Graphical Model and covariance selection

Inverse covariance viewpoint

$$
-\frac{\Theta_{ij}}{\sqrt{\Theta_{ii}\Theta_{jj}}}=\text{cor}\left(X_i,X_j|X_{\mathcal{P}\setminus\{i,j\}}\right)=\rho_{ij|\mathcal{P}\setminus\{i,j\}},
$$

Graphical Interpretation

 \rightarrow The matrix $\mathbf{\Theta} = (\Theta_{ij})_{i,j \in \mathcal{P}}$ encodes the network $\mathcal G$ we are looking for.

\rightsquigarrow "covariance" selection

Gaussian Graphical Model and Linear Regression

Linear regression viewpoint

Gene expression X_i is linearly explained by the other genes':

$$
X_i|X_{\setminus i}=-\sum_{j\neq i}\frac{\Theta_{ij}}{\Theta_{ii}}X_j+\varepsilon_i,\quad \varepsilon_i\sim\mathcal{N}(0,\sigma_i),\quad \varepsilon_i\perp X_i
$$

Conditional on its neighborhood, other profiles do not give additional insights

$$
X_i|X_{\backslash i} = \sum_{j \in \text{neighbors}(i)} \beta_j X_j + \varepsilon_i \quad \text{with } \beta_j = -\frac{\Theta_{ij}}{\Theta_{ji}}.
$$

 \rightsquigarrow "Neighborhood" selection

The penalized likelihood approach

Let Θ be the model parameter to infer (related to the edges).

Constraint Optimization approach

\n
$$
\hat{\Theta}_{\lambda} = \arg \max_{\Theta} \left\{ \underbrace{\log \det \Theta - \text{trace}(\textbf{S}\Theta)}_{\propto \text{ log-likelihood}} \right\} \quad \text{s.t.} \quad \sum_{i > j} \Theta_{ij} \neq 0 \leq c,
$$

where $S = n^{-1}X^{T}X$.

Gold standard convexified penalized approaches Use ℓ_1 as a proxy fot the ℓ_0

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008) $\hat{\boldsymbol{\Theta}}_{\lambda} = \arg\, \max \ell(\boldsymbol{\Theta};\mathbf{X}) - \lambda \lVert \boldsymbol{\Theta} \rVert_1$ $\Theta \in \mathbb{S}_+$

- $+$ symmetric, positive-definite
- − solved by the "Graphical-Lasso" ($\mathcal{O}(p^3)$, *Friedman et al, 2007*).

Neighborhood Selection (Meinshausen & Bülhman, 2006) $\widehat{\boldsymbol{\beta}}^{(i)} = \argmin_{\boldsymbol{\beta} \in \mathbb{R}^{p-1}} \frac{1}{n}$ $\left\Vert \mathbf{X}_{i}-\mathbf{X}_{\setminus i}\,\boldsymbol{\beta }\right\Vert$ $\frac{2}{2} + \lambda \left\|\boldsymbol{\beta}\right\|_1$

 $\widehat{\boldsymbol{\Theta}} = \argmin_{\boldsymbol{\Theta}} \|\boldsymbol{\Theta}\|_1$ subjected to $\left\| n^{-1} \mathbf{X}^t \mathbf{X} \boldsymbol{\Theta} - \mathbf{I} \right\|_\infty \leq \lambda$

Gold standard convexified penalized approaches Use ℓ_1 as a proxy fot the ℓ_0

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008) $\hat{\boldsymbol{\Theta}}_{\lambda} = \arg\, \max \ell(\boldsymbol{\Theta};\mathbf{X}) - \lambda \lVert \boldsymbol{\Theta} \rVert_1$ $\Theta \in \mathbb{S}_+$

Neighborhood Selection (Meinshausen & Bulhman, 2006) ¨ $\widehat{\boldsymbol{\beta}}^{(i)} = \argmin_{\boldsymbol{\beta} \in \mathbb{R}^{p-1}}$ $\beta \in \mathbb{R}^{p-1}$ 1 n $\left\Vert \mathbf{X}_{i}-\mathbf{X}_{\setminus i}\,\beta\right\Vert$ 2 $\frac{2}{2} + \lambda \left\| \beta \right\|_1$

- not symmetric, not positive-definite
- p Lasso solved with Lars-like algorithms ($\mathcal{O}(npd)$ for d neighbors).

 $\widehat{\boldsymbol{\Theta}} = \argmin_{\boldsymbol{\Theta}} \|\boldsymbol{\Theta}\|_1$ subjected to $\left\| n^{-1} \mathbf{X}^t \mathbf{X} \boldsymbol{\Theta} - \mathbf{I} \right\|_\infty \leq \lambda$

Gold standard convexified penalized approaches Use ℓ_1 as a proxy fot the ℓ_0

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008) $\hat{\boldsymbol{\Theta}}_{\lambda} = \arg\, \max \ell(\boldsymbol{\Theta};\mathbf{X}) - \lambda \lVert \boldsymbol{\Theta} \rVert_1$ $\Theta \in \mathbb{S}_+$

Neighborhood Selection (Meinshausen & Bulhman, 2006) ¨ $\widehat{\boldsymbol{\beta}}^{(i)} = \argmin_{\boldsymbol{\beta} \in \mathbb{R}^{p-1}}$ $\beta \in \mathbb{R}^{p-1}$ 1 n $\left\Vert \mathbf{X}_{i}-\mathbf{X}_{\setminus i}\,\beta\right\Vert$ 2 $\frac{2}{2} + \lambda \left\| \beta \right\|_1$

CLIME – Pseudo-likelihood (Cai et al., 2011; Yuan, 2010) $\widehat{\boldsymbol{\Theta}} = \argmin_{\boldsymbol{\Theta}} \|\boldsymbol{\Theta}\|_1$ subjected to $\left\|n^{-1} \mathbf{X}^t \mathbf{X} \boldsymbol{\Theta} - \mathbf{I}\right\|_\infty \leq \lambda$ Θ

- − not positive-definite
- + p linear programs easily distributed $(\mathcal{O}(p^2d)$ for d neighbors).

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote $d = \max_{i \in \mathcal{P}} (\text{degree}_i)$. Consistency for an appropriate λ and

- $n \approx \mathcal{O}(d^2 \log(p))$ for the graphical Lasso and Clime.
- $n \approx \mathcal{O}(d \log(p))$ for neighborhood selection (sharp).

Minimax risk for sparse regression with d-sparse models: useless when

$$
\frac{d \log(p/d)}{n} \ge 1/2, \qquad (e.g., n = 50, p = 200, d \ge 8).
$$

Can be handled after data transformation ("skeptic" by Wasserman et al., package huge).

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote $d = \max_{i \in \mathcal{P}} (\text{degree}_i)$. Consistency for an appropriate λ and

- $n \approx \mathcal{O}(d^2 \log(p))$ for the graphical Lasso and Clime.
- $n \approx \mathcal{O}(d \log(p))$ for neighborhood selection (sharp).

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with d -sparse models: useless when

$$
\frac{d \log(p/d)}{n} \ge 1/2, \qquad (e.g., n = 50, p = 200, d \ge 8).
$$

Can be handled after data transformation ("skeptic" by Wasserman et al.,

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote $d = \max_{i \in \mathcal{P}} (\text{degree}_i)$. Consistency for an appropriate λ and

- $n \approx \mathcal{O}(d^2 \log(p))$ for the graphical Lasso and Clime.
- $n \approx \mathcal{O}(d \log(p))$ for neighborhood selection (sharp).

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with d -sparse models: useless when

$$
\frac{d \log(p/d)}{n} \ge 1/2, \qquad (e.g., n = 50, p = 200, d \ge 8).
$$

What about Count data/non Gaussian distribution

Can be handled after data transformation ("skeptic" by Wasserman et al., package huge).

Outline

[Introduction](#page-1-0)

- 2 [Some network inference approaches](#page-11-0) **•** [Graphical model](#page-13-0)
	- **[Tree-structured Graphical Models](#page-26-0)**

[Some results](#page-32-0)

[Conclusion](#page-44-0)

Tree-structured Graphical Models

 $G = \{$ decomposable graphs $\}$

 \bullet π distribution for Y Markov w.r.t. G

 $\{i,j\} \notin E_G \Leftrightarrow Y_i \perp\!\!\!\perp Y_j | Y_{V \setminus \{i,j\}}$

Tree-structured Graphical Models

 \bullet π distribution for Y Markov w.r.t. T

 $\{i,j\} \notin E_{\mathcal{T}} \Leftrightarrow Y_i \perp\!\!\!\perp Y_j | Y_{V \setminus \{i,j\}}$

Tree-structured Graphical Models

π T Y

 $\mathcal{T} \sim \mathcal{U}(\mathcal{T})$ π | T $\sim \rho$ $\mathbf{Y}|\pi \sim \pi$

 $\pi \mid \rho$ Multinomial | Dirichlet $Gaussian \mid normal-Wishart$ for (μ,Λ) $\mathsf{Copula} \mid \mathcal{U}([-1,1])$ for the entries of the precision matrix

Posterior Edge Probabilities

$$
p(\lbrace i,j \rbrace \in E_{\mathcal{T}} | \mathbf{Y}) = \sum_{\substack{T \in \mathcal{T} \\ T \ni \lbrace i,j \rbrace}} p(T | \mathbf{Y})
$$

Easily computed thanks to an algebra result called the Matrix-Tree if ρ has some Markov property

 \triangleright Complexity $\mathcal{O}(p^3)$

ROC curves

• For a given threshold (λ) , correlation, ...) we can compute the table

- \triangleright TPR : TP / (Number of true edges)
- FPR : FP / (Number of none-edges)

- Compute the TPR and FPR for various thresholds
- **Draw the TPR as a function of FPR**

Outline

[Introduction](#page-1-0)

- [Some network inference approaches](#page-11-0)
	- **[Graphical model](#page-13-0)**
	- **[Tree-structured Graphical Models](#page-26-0)**

3 [Some results](#page-32-0)

[Conclusion](#page-44-0)

Performances as a function of the number of samples

Dye-swapped and mean centered

• Pearson correlation

• Spearman correlation

Performances as a function of the number of samples

Dye-swapped and mean centered

 \bullet Spearman + Glasso

\bullet Copula + Tree

Performances as a function of the number of samples

Conclusion

• We recover part of the network !

Performances as a function of the normalization

• Pearson Correlation

• Spearman Correlation

Performances as a function of the normalization

meanCenter.dyeswapped

...

Performances as a function of the normalization

Conclusion

- Normalization counts
- • Raw and red-green?

Performances as a function of the transformation

red-green and raw

o Correlation

GLasso

Performances as a function of the transformation

Conclusion

- It seems important to transform the data
- \bullet Non-paranormal skeptic $+$ correlation ?

Influence of the difficulty level

dye-swapped mean centered (spearman, glasso+spearman, tree+copula)

Influence of the difficulty level

red-green and raw (npn.cor, glasso+npn.cor, tree+copula)

Influence of the difficulty level

Conclusion

• Results are worst when considering more genes

Outline

[Introduction](#page-1-0)

[Some network inference approaches](#page-11-0)

- **[Graphical model](#page-13-0)**
- **[Tree-structured Graphical Models](#page-26-0)**

[Some results](#page-32-0)

Conclusion

Conclusion

- We recover at least part of the network
- More samples leads to better results
- Some normalizations and transformations seem to work better

To do

- Infer the network using none-dedicated data
- More approaches (prior)?

Questions?

- Raw and red-green
- • Non-paranormal skeptic $+$ cor