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Biological Context

Object
Reconstruct the biological network between genes based on
data of genes expression levels by using linear regression
models.

Example
Each node is one gene.
Presence/Absence of an
edge represents the relation
between 2 genes.
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Previous Works
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Graphical Gaussian Model (GGM)

Hypothesis
The level expression of 1 gene is a random variable Xj , with
j = 1, .., p.
Suppose the data follows one multivariate normal distribution:

(X1, ..,Xp) ∼ N(β,Σ).

Remark
Genes expressions might be shifted by 2 nonindependent
phenomenons:

1. Its average expression level of genes.
2. Its relations with others genes.
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Disadvantages

Main Principles
Raw data must be normalized by empirical mean values before
using.
Data follows multivariate normal distribution:

(X1, ..,Xp) ∼ N(β = 0,Σ).

Potential problems due to the high dimension framework
Empirical means could be not a good estimators in some sorts
of data.
For a gene, its expression and its relations with other genes
may be linked.
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Our Model
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COULD WE ?

Get better estimators for β ?

⇓

Graphical Gaussian Model
Suppose the data follows multivariate normal distribution:

(X1, ..,Xp) ∼ N(β,Σ).

In the case of real data with K different conditions of p genes:

(X1, ..,Xp)k ∼ N(βk ,Σk).
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Merge several experimental conditions

By breaking the separability
condition 1 condition 2 condition 3

(X (1)
1 , . . . , X (1)

n1 ) (X (2)
1 , . . . , X (2)

n2 ) (X (3)
1 , . . . , X (3)

n3 )

inference inference inferenceinference inference inference
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How to estimate those parameters ?

Linear Regression Model
Adapt the previous works of Meinshausen and Buhlmann in
2006 (Neighborhood selection). GGM becomes:

X k
ij = βk

j +
p∑

a=1
θk

ja(X k
ia − βk

a ) + εkj

εkj ∼ N(0, σ2)

Note that the adjacency matrix of θk and (Σ−1)k are the
same:

θk
ij 6= 0⇐⇒ (Σ−1)k

ij 6= 0
θk

ij = 0⇐⇒ (Σ−1)k
ij = 0
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Model

Notations
X k

ij is the expression level of gene j with replication i , in the
condition k.
βk

j is the mean expression level of gene j in the condition k.
θk

ja explains the relation between genes a and gene j .

Model

X k
ij = βk

j +
p∑

a=1
θk

ja(X k
ia − βk

a ) + εkj ,
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Criterion

Minimize

E = L + λ1F (θk) + λ2(
∑

j
ω12|β1

j − β2
j |) + λ3

∑
k
‖βk‖1

L :=
∑
i ,j,k
‖X k

ij − βk
j −

p∑
a=1

θk
ja(X k

ia − βk
a )‖22

Penalties
1st Penalty : Fewer edges or taking similarity networks into
account.
2nd Penalty : Fused β.
3rd Penalty : Control the Magnitude of β.
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Choices of F

1st Penalty- Tibshirani et al(1996) - Chiquet et al (2011)
Lasso:

λ1
∑
j 6=a

∑
k
|θk

ja|

Group Lasso:
λ1

∑
j 6=a

(
∑

k
(θk

ja)2))1/2

Cooperative Lasso:

λ1
∑
j 6=a

(
∑

k
(−θk

ja, 0)2
+))1/2 + λ1

∑
j 6=a

(
∑

k
(θk

ja, 0)2
+))1/2
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Grouping effects induced

Potential groups Group(s) induced by edges (1, 2)
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Estimate the parameters

Minimize

E = L + λ1
∑

k
‖θk‖1 + λ2(

∑
j
ω12|β1

j − β2
j |) + λ3

∑
k
‖βk‖1

L :=
∑
i ,j,k
‖X k

ij − βk
j −

p∑
a=1

θk
ja(X k

ia − βk
a )‖22

Algorithm
While (not converge) do

Fixed all β(k), find θ(k) [ simone - Chiquet et al, glasso -
Tibshirani et al].
Fixed all θ(k), find β(k) [ genlasso - Arnold et al].

end
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Choice for λ1, λ2, λ3

BIC criterion

BIC(λ1, λ2, λ3) = 2Log-likelihood− df × Log(nK)

df = ]{(j , k)|βk
j 6= 0}+ ]{(i , j , k)|θk

i ,j 6= 0}/2

Making a 3 dimensions grid
of triplet (λ1, λ2, λ3).
Choose the triplet which
maximize BIC.
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Numerical Experiments
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Simulation data

Details
We consider the case with only 2 conditions. For all
conditions, we choose the same number of replications
n = {30, 60, 100, 200}. Number of variables, or genes p = 100
always.
Each data file contains two matrices n × p corresponding with
2 conditions.

scenarios
1 Two simulated data have same θ(s), same βk(s).
2 Two simulated data have same θ(s), a percentage of βk(s) is

different.
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Measures of Quality

Relative Error:

RE (β̂(1), β̂(2)) =
100

K × p
∑

j

∑
k

|β̂(k)j − β(k)true
j |

|β(k)true
j |

Mean Square Error:

MSE (β̂(1), β̂(2)) =
1

K × p
∑

k

∑
j
|β̂(k)j − β(k)true

j |2
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Comparing our mean with empirical mean

Our estimator is
better than the
empirical mean,
especially in case of
few replications.
They all tends to the
true values in case of
many replications.
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Comparing our network with other methods

Algorithm
While (not converge) do

Fixed all β(k), find θ(k) [ simone - Chiquet et al, glasso -
Tibshirani et al].
Fixed all θ(k), find β(k) [ genlasso - Arnold et al].

end

We usually got the same adjacency matrix.
However the magnitude of θ(s) are different.
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Outlook

Conclusion
We propose a new way to estimate average level expression of
genes while using GGM and linear regression model for gene
expression data.
In term of mean expression, we got some good results.
However, we have not improved results on the networks yet.

Perspective
Finding different reactions of networks and genes in different
conditions.
Theoretical results on consistency of our estimators (β̂, θ̂) are
in progress.
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THANK YOU !
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