

Applying Multivariate Regressions in Large Dimension Data

Trung Ha, 1st year PhD student. Ecole doctorale des Genomes Aux Organismes, Univ. d'Evry Supervisors : Marie-Laure Martin Magniette, Julien Chiquet, Guillem Rigaill.

September-2014

Introduction

Biological Context

Object

• Reconstruct the biological network between genes based on data of genes expression levels by using linear regression models.

Example

- Each node is one gene.
- Presence/Absence of an edge represents the relation between 2 genes.

Biological Context

Object

• Reconstruct the biological network between genes based on data of genes expression levels by using linear regression models.

Example

- Each node is one gene.
- Presence/Absence of an edge represents the relation between 2 genes.

Previous Works

Graphical Gaussian Model (GGM)

Hypothesis

- The level expression of 1 gene is a random variable \mathcal{X}_{j} , with $j = 1, ..., p$.
- Suppose the data follows one multivariate normal distribution:

$$
(X_1,..,X_p) \sim N(\beta,\Sigma).
$$

Remark

- Genes expressions might be shifted by 2 nonindependent phenomenons:
	- 1. Its average expression level of genes.
	- 2. Its relations with others genes.

Graphical Gaussian Model (GGM)

Hypothesis

- The level expression of 1 gene is a random variable \mathcal{X}_{j} , with $j = 1, ..., p$.
- Suppose the data follows one multivariate normal distribution:

$$
(X_1,..,X_p) \sim N(\beta,\Sigma).
$$

Remark

- Genes expressions might be shifted by 2 nonindependent phenomenons:
	- 1. Its average expression level of genes.
	- 2. Its relations with others genes.

Disadvantages

Main Principles

- Raw data must be normalized by empirical mean values before using.
- Data follows multivariate normal distribution:

$$
(X_1,..,X_p)\sim N(\beta=0,\Sigma).
$$

Potential problems due to the high dimension framework

- Empirical means could be not a good estimators in some sorts of data.
- For a gene, its expression and its relations with other genes may be linked.

Disadvantages

Main Principles

- Raw data must be normalized by empirical mean values before using.
- Data follows multivariate normal distribution:

$$
(X_1,..,X_p)\sim N(\beta=0,\Sigma).
$$

Potential problems due to the high dimension framework

- Empirical means could be not a good estimators in some sorts of data.
- For a gene, its expression and its relations with other genes may be linked.

Our Model

 \bullet In the case of real data with K different conditions of p genes:

$$
(X_1,..,X_p)^k \sim N(\beta^k,\Sigma^k).
$$

Suppose the data follows multivariate normal distribution:

$$
(X_1,..,X_p) \sim N(\beta,\Sigma).
$$

 \bullet In the case of real data with K different conditions of p genes:

$$
(X_1,..,X_p)^k \sim N(\beta^k,\Sigma^k).
$$

Merge several experimental conditions

How to estimate those parameters ?

Linear Regression Model

Adapt the previous works of Meinshausen and Buhlmann in 2006 (Neighborhood selection). GGM becomes:

$$
X_{ij}^k = \beta_j^k + \sum_{a=1}^p \theta_{ja}^k (X_{ia}^k - \beta_a^k) + \epsilon_j^k
$$

$$
\epsilon_j^k \sim N(0, \sigma^2)
$$

Note that the adjacency matrix of θ^k and $(\Sigma^{-1})^k$ are the same:

$$
\theta_{ij}^k \neq 0 \Longleftrightarrow (\Sigma^{-1})_{ij}^k \neq 0
$$

$$
\theta_{ij}^k = 0 \Longleftrightarrow (\Sigma^{-1})_{ij}^k = 0
$$

Model

Notations

- X_{ij}^k is the expression level of gene j with replication i , in the condition k.
- β_j^k is the mean expression level of gene j in the condition $k.$
- θ_{ja}^k explains the relation between genes *a* and gene *j*.

Model

$$
X_{ij}^k = \beta_j^k + \sum_{a=1}^p \theta_{ja}^k (X_{ia}^k - \beta_a^k) + \epsilon_j^k,
$$

Criterion

Minimize

$$
E = L + \lambda_1 F(\theta^k) + \lambda_2 (\sum_j \omega_{12} |\beta_j^1 - \beta_j^2|) + \lambda_3 \sum_k ||\beta^k||_1
$$

$$
L := \sum_{i,j,k} ||X_{ij}^k - \beta_j^k - \sum_{a=1}^p \theta_{ja}^k (X_{ia}^k - \beta_a^k) ||_2^2
$$

Penalties

- 1st Penalty : Fewer edges or taking similarity networks into account.
- 2nd Penalty : Fused *β*.
- 3rd Penalty : Control the Magnitude of *β*.

Choices of F

1st Penalty- Tibshirani et al(1996) - Chiquet et al (2011)

· Lasso:

$$
\lambda_1 \sum_{j \neq a} \sum_k |\theta_{ja}^k|
$$

• Group Lasso:

$$
\lambda_1 \sum_{j\neq a} (\sum_k (\theta_{ja}^k)^2))^{1/2}
$$

• Cooperative Lasso:

$$
\lambda_1 \sum_{j \neq a} (\sum_k (-\theta_{ja}^k, 0)_+^2)^{1/2} + \lambda_1 \sum_{j \neq a} (\sum_k (\theta_{ja}^k, 0)_+^2)^{1/2}
$$

Grouping effects induced

Potential groups Group(s) induced by edges (1*,* 2)

Estimate the parameters

Minimize

$$
E = L + \lambda_1 \sum_{k} ||\theta^{k}||_1 + \lambda_2 (\sum_{j} \omega_{12}|\beta_{j}^{1} - \beta_{j}^{2}|) + \lambda_3 \sum_{k} ||\beta^{k}||_1
$$

$$
L := \sum_{i,j,k} ||X_{ij}^{k} - \beta_{j}^{k} - \sum_{a=1}^{p} \theta_{ja}^{k} (X_{ia}^{k} - \beta_{a}^{k})||_{2}^{2}
$$

Algorithm

While (not converge) **do**

- Fixed all $\beta^{(k)}$, find $\theta^{(k)}$ [simone Chiquet et al, *glasso* -Tibshirani et al].
- Fixed all $\theta^{(k)}$, find $\beta^{(k)}$ [*genlasso* Arnold et al].

end

Choice for $\lambda_1, \lambda_2, \lambda_3$

BIC criterion

$$
\text{BIC}(\lambda_1, \lambda_2, \lambda_3) = 2\text{Log-likelihood} - df \times \text{Log}(n\text{K})
$$

$$
df = \sharp \{(j, k) | \beta_j^k \neq 0\} + \sharp \{(i, j, k) | \theta_{i,j}^k \neq 0\}/2
$$

- Making a 3 dimensions grid of triplet $(\lambda_1, \lambda_2, \lambda_3)$.
- Choose the triplet which maximize BIC.

Choice for $\lambda_1, \lambda_2, \lambda_3$

BIC criterion

$$
\text{BIC}(\lambda_1, \lambda_2, \lambda_3) = 2\text{Log-likelihood} - df \times \text{Log}(n\text{K})
$$

$$
df = \sharp \{(j, k) | \beta_j^k \neq 0\} + \sharp \{(i, j, k) | \theta_{i,j}^k \neq 0\}/2
$$

- Making a 3 dimensions grid of triplet $(\lambda_1, \lambda_2, \lambda_3)$.
- Choose the triplet which maximize BIC.

Numerical Experiments

Simulation data

Details

- We consider the case with only 2 conditions. For all conditions, we choose the same number of replications $n = \{30, 60, 100, 200\}$. Number of variables, or genes $p = 100$ always.
- Each data file contains two matrices $n \times p$ corresponding with 2 conditions.

scenarios

- ¹ Two simulated data have same *θ*(s), same *β* k (s).
- 2) Two simulated data have same $\theta(\mathsf{s})$, a percentage of $\beta^k(\mathsf{s})$ is different.

Simulation data

Details

- We consider the case with only 2 conditions. For all conditions, we choose the same number of replications $n = \{30, 60, 100, 200\}$. Number of variables, or genes $p = 100$ always.
- Each data file contains two matrices $n \times p$ corresponding with 2 conditions.

scenarios

- ¹ Two simulated data have same *θ*(s), same *β* k (s).
- \bullet Two simulated data have same $\theta(\mathsf{s})$, a percentage of $\beta^k(s)$ is different.

Measures of Quality

• Relative Error:

$$
RE(\hat{\beta}^{(1)}, \hat{\beta}^{(2)}) = \frac{100}{K \times p} \sum_{j} \sum_{k} \frac{|\hat{\beta}_{j}^{(k)} - \beta_{j}^{(k)true}|}{|\beta_{j}^{(k)true}|}
$$

• Mean Square Error:

$$
MSE(\hat{\beta}^{(1)}, \hat{\beta}^{(2)}) = \frac{1}{K \times p} \sum_{k} \sum_{j} |\hat{\beta}_j^{(k)} - \beta_j^{(k) \text{true}}|^2
$$

Comparing our mean with empirical mean

EER boxplot-10 percents same

- **Our estimator is** better than the empirical mean, especially in case of few replications.
- They all tends to the true values in case of many replications.

Comparing our mean with empirical mean

EER boxplot-10 percents same

- **Our estimator is** better than the empirical mean, especially in case of few replications.
- They all tends to the true values in case of many replications.

Comparing our network with other methods

Algorithm

While (not converge) **do**

- Fixed all $\beta^{(k)}$, find $\theta^{(k)}$ [simone Chiquet et al, *glasso* -Tibshirani et al].
- Fixed all $\theta^{(k)}$, find $\beta^{(k)}$ [*genlasso* Arnold et al].

end

- We usually got the same adjacency matrix.
- However the magnitude of *θ*(s) are different.

Outlook

Conclusion

- We propose a new way to estimate average level expression of genes while using GGM and linear regression model for gene expression data.
- In term of mean expression, we got some good results. However, we have not improved results on the networks yet.

Perspective

- Finding different reactions of networks and genes in different conditions.
- Theoretical results on consistency of our estimators $(\hat{\beta}, \hat{\theta})$ are in progress.

Outlook

Conclusion

- We propose a new way to estimate average level expression of genes while using GGM and linear regression model for gene expression data.
- In term of mean expression, we got some good results. However, we have not improved results on the networks yet.

Perspective

- Finding different reactions of networks and genes in different conditions.
- Theoretical results on consistency of our estimators $(\hat{\beta}, \hat{\theta})$ are in progress.

- Tibshirani, R. Regression shrinkage and selection via the lasso. J. Roy. Statist, (1996).
- Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, Keith Knight. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society, (2005)
- **•** Julien Chiquet, Yves Grandvalet, Christophe Ambroise. Inferring Multiple Graphical Models. (2011)
- Nicolai Meinshausen, Peter Buhlmann. High dimensional graphs and variable selection with the LASSO. The Annals of Statistics, (2006).

THANK YOU !