

Rim ZAAG PhD student Bioinformatics for Predictive Genomics Team

Thesis supervisors Marie-Laure Martin-Magniette Etienne Delannoy From Gene Expression modelling to CoRegulation networks for Arabidopsis

NETBIO Thursday 18th September 2014

CINIS

Agro ParisTech

INRA

• A huge 'orphan of function' gene space:

> 20% to 40% of the predicted genes for completely sequenced eukaryotic organisms have no assigned function (Hanson et al., 2010).

> More than 5000 Arabidopsis genes are still hypothetical or unknown genes according the TAIR v10 annotation.

• Our knowledge about gene candidates involved in the adaptation of plants to their environment remains partial (of potential interest for crop improvement).

Context and Background

• Functional annotation procedures based on sequence similarities have reached their limitations

• One gene-one enzyme hypothesis is now considered as an oversimplification

> Availability of thousands of transcriptomes: allow us to shift from a 'gene by gene' approach to more global approach through the 'guilt by association' concept.

> Hypothesis: Coexpressed genes have likely related biological functions (Eisen et al., 1998)

Classical Flowchart

Bioinformatic characterisation (GO, TFBS, PPI,TF-target, bibliome...)

Focus on specific genes for biological validation

- Drawbacks

- Data are generally extracted from international repositories
- It leads to heterogeneous data in terms of acquisition and preprocessing.
- Coexpression generally done by analyzing gene pairs (Pearson correlation)
- It is a local point of view of a complex question.

Our Approach: Goals & methods

Goals:

- I. Provide a global overview of the coexpression units of genes responding to a panel of stress stimuli in *Arabidopsis thaliana*.
- II. Go beyond the coexpression to identify coregulated modules of functional partner genes.
- III. Inference of function to orphan genes in well-characterized modules.

Methods: original features

- The specificities of the dataset and the biological theme: homogeneous and dedicated transcriptomic data.
- The method of clustering: model based method
- The integration of various resources to improve the functional inference.

Transcriptomic Dataset

CATdb :Complete Arabidopsis transcriptome database

➤ Large and homogeneous transcriptome resource generated by the CATMA platform of URGV and available in CATdb (http://urgv.evry.inra.fr/CATdb; Gagnot et al., NAR 2008).

➤ ~ 6000 original genes not present in the commonly used ATH1 Affymetrix DNA chip.

➢ All experiments dedicated to stresses were considered: 9 biotic and 9 abiotic stress categories

Differential expression analysis

17 264 genes have transcription
'impacted' (directly or not) by at least one stress experiment

CoExpression Analysis

Gene Clustering: Identification of co-expressed genes from the expression differences through a Model based clustering method for each stress category.

Matrix	Stress category	Gene_nb	Clusters_nb
{ genes x experiments }	Nitrogen	13 495	59
By stress	Temperature	11 365	34
	Drought	8 143	34
	Salt	5 729	30
odel	Heavy metal	10 617	57
Mathematical Criterion to select the	UV	7 894	37
cluster number (BIC)	Gamma	5 350	32
Classification rule based on conditional probabilities	Oxydative stress	10 127	52
Sial	Nectrophic bacteria	11 220	50
	Biotrophic bacteria	12 023	56
	Fungi	9 773	51
	Rhodococcus	1 900	13
	Oomycete	5 508	31
700 Clusters of Coexpressed	Nematode	7 413	27
Genes	Stifenia	1 525	17

Virus

11 832

54

GEM2Net Flowchart:

This project has been implemented as a new CATdb module: GEM2Net associated with a user-friendly Interface

Functional inference by coregulation analysis

What is CoRegulation?

Group of genes which are coexpressed in several stress conditions : key players of stress response

What is CoRegulation?

Group of genes which are coexpressed in several stress conditions : key players of stress response

What is CoRegulation?

Group of genes which are coexpressed in several stress conditions : key players of stress response

How to perform it?

Occurrence of pairs of coexpressed genes conserved in several stresses among the 18 considered stress categories

What is CoRegulation?

Group of genes which are coexpressed in several stress conditions : key players of stress response

How to perform it?

Occurrence of pairs of coexpressed genes conserved in several stresses among the 18 considered stress categories

Pairs conserved in at least n stresses

n	Nbr pair of genes
2	5 533 013
3	423 771
4	68 875
5	19 113
6	6 987
7	3 366
8	1 679
9	786
10	324
11	171
12	81
13	39
14	12
15	6

What is CoRegulation?

Group of genes which are coexpressed in several stress conditions : key players of stress response

How to perform it?

Occurrence of pairs of coexpressed genes conserved in several stresses among the 18 considered stress categories

When coexpression becomes coregulation?

Pairs conserved in at least n stresses

n	Nbr pair of genes
2	5 533 013
3	423 771
4	68 875
5	19 113
6	6 987
7	3 366
8	1 679
9	786
10	324
11	171
12	81
13	39
14	12
15	6

 \triangleright We searched a threshold k at which the probability that a pair of genes is coexpressed in k stresses is significantly different from random.

Permutation scheme:

- 1. Do 1000 times
 - a) Shuffle gene classification within each stress category.
 - b) Occurrence calculation

2. Error rate calculation: average of occurrence in random samples divided by the occurrence in our data.

Number of stresses (n)	Random Network	Biological Network	Error_rate
4+	1 549	32 313	4.79%
5+	12	13 200	0.09%
6+	0	6 216	0%
7+	0	3 366	0%

Occurrence of pairs conserved in at least n stresses within our random and biological networks

Pairs conserved in at least 7 stresses 867 genes, 3366 pairs

Legend Coregulated genes Orphan genes TF

Legend Coregulated genes Orphan genes TF

Legend Coregulated genes Orphan genes TF

31 connected components

Legend Coregulated genes Orphan genes TF 31 connected components Functional Modules ???

Gene Ontology Enrichment Analysis

GO:Cellular Component Ontology

Specific and homogeneous modules

Cis-regulatory motifs Enrichment Analysis

Global CoRegulation Network Analysis (867 genes)

Bernard et al., 2010
 30 TFBS are found Over-represented by comparison with the whole genome present at most in 30% of promoters.

CoRegulation Network Analysis by component (9 largest components)

• 8 components are enriched in TFBS.

• 4 components are enriched with a pattern that is present in over 60% of their promoters

Cis-regulatory motifs Enrichment Analysis

Global CoRegulation Network Analysis (867 genes)

 PLMDETECT
 Bernard et al., 2010
 30 TFBS are found Over-represented by comparison with the whole genome present at most in 30% of promoters.

• 8 components are enriched in TFBS.

• 4 components are enriched with a pattern that is present in over 60% of their promoters

Genes are under the control of the same common regulators
 Using the network topology is a good track for identifying modules
 Module = Functional partners

Example of an orphan identification within a module

Example of an orphan identification within a module

Example of an orphan identification within a module

Molecular Function

structural

molecule activity

 \checkmark Refine the search of functional modules using methods of topological network analysis

 \checkmark Integration with interactome data to improve the quality of function inference

✓ First step toward regulatory networks

Acknowledgements

Thank you for your attention

Next steps : From clusters to gene networks

From co-regulation clusters to groups of putative functional partners

- Merging and extension of clusters (functions, profiles),

(putative regulators and TF will be targeted)

