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Our BioSys Lab

Our unit:
Bioinformatics and Systems Biology (Biosys)

Université de Liège, Belgium

Team biased towards large networks, machine learning and
algae...

Collaborating with three PhD students:

Ngoc Pham (From Vietnam)
Expression-Based Transcriptional Networks

Eoin Marron (From Ireland)
Chlamydomonas reinhardtii data-mining

Pau Bellot (From Spain, co-tutelle with UPC)
Meta-network inference
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Notation

X = (X1, X2, ..., Xn) : the set of n variables

Xk ∈ X : one variable of the set

XK ⊂ X: a subset of variables

X−k = X \Xk : set of variables without Xk

X−K : the set X without the subset of variables XK

Xi,j = {Xi, Xj} : two variables of the set X

X−(i,j): set of variables X without Xi and Xj
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Mutual Information (MI)

Definition ([Thomas and Cover])

Let Xi and Xj be two (discrete) random variables, the mutual
information between Xi and Xj is

I(Xi;Xj) =
∑
xi∈Xi

∑
xj∈Xj

p(xi, xj) log

(
p(xi, xj)

p(xi)p(xj)

)

Mutual information is a divergence between the joint and
the product distribution.

I(Xi;Xj) is maximal if Xi or Xj is perfectly predictable
from the other.

I(Xi;Xj) = 0 if Xi or Xj are independent
(unpredictable).
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Conditional Mutual Information (CMI)

Definition ([Thomas and Cover])

Let Xi, Xj and Xk be three random variables, the conditional
mutual information between two random variables Xi and Xj

knowing Xk is

I(Xi;Xj |Xk) = I((Xi, Xk);Xj)− I(Xk;Xj)

It measures the gain of information on Xj (or Xi) due to
the other variable Xi (or Xj ), when Xk is given.

I(Xi;Xj |Xk) ≥ 0 with equality iff Xi and Xj are
conditionally independent given Xk.
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Transcriptional Network

gene→ RNA→ protein

some protein (tf) can modify RNA production of target
genes (tg)

⇒ Each cell has an encoded network (circuit) in DNA.

Each node is a gene.

An arc connects a
regulator gene (tf) to
a regulated one (tg).
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Problem Formalization

inputs X: m× n matrix, where xri is the realization of
gene Xi at measurement sr

output T̂ : list of triplets (tf, weight, tg) of length
#tf ×#tg

DATA X1 X2 ... Xn

s 1 0.1 0.9 ... 0.5

... ... ... ... ...

s m 0.2 0.3 ... 0.8

⇒

tf w tg

X1 0.1 X2

... ... ...

... ... ...

X#tf 0.9 X#tg
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Cause

Definition (Cause [Neapolitan, 2003])

Xi is a cause of Xj , denoted by Xi → Xj , if there exists a
value xi ∈ Xi such that setting Xi = xi leads to a change in
the probability distribution of Xj .

In other words: causality creates a (bivariate) dependency
between a cause and its effect.

Xi ↔ Xj ⇒ I(Xi;Xj) > 0

where Xi ↔ Xj denote an undirected causal link, i.e.,
Xi → Xj or/and Xi ← Xj .
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Assumption

Xj ↔ Xi ⇒ I(Xi;Xj) > 0

This bivariate dependency is true in most cases but not always:
cancellation of two causal pathways, the XOR.

Example ( XOR problem [Neapolitan 2003])

Xi Xk

↘ ↙
Xj

Xi 1 1 0 0

Xk 1 0 1 0

Xj = Xi ⊕Xk 0 1 1 0
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Indirect links

In most cases, Xj ↔ Xi ⇒ I(Xi;Xj) > 0

Unfortunately, reverse is not true:
There are three cases of indirect interaction with three
variables:

1 Xj → Xk → Xi

2 Xj ← Xk → Xi

3 Xj → Xk ← Xi

Two of them typically lead to high I(Xj ;Xi)
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Direct Causality

Definition (Direct cause [Neapolitan, 2003])

Xi is a direct cause of Xj if Xi is a cause of Xj and there is
no other variable Xk such that once we know the value of Xk,
a manipulation of Xi no longer changes the probability
distribution of Xj .

It means:
two dependent variables are no longer dependent once given
the direct cause.

Xi → Xk → Xj

Xi ← Xk → Xj

}
⇒ I(Xi;Xj |Xk) = 0
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Direct causality (2)

Equivalently: if there are no set of variables that cancel the
dependency between two variables, then one of these variables
is a direct cause of the other. More formally:

∀XK ⊆ X−(i,j) : I(Xi;Xj |XK) > 0⇒ Xi ↔ Xj

Implicit assumption of causal sufficiency, that is all the
variables that cause at least two effects (two variables in the
dataset) should also be present in the dataset:

∀(Xi, Xj) ∈ X : ∃Xk, Xi ← Xk → Xj ⇒ Xk ∈ X−(i,j)
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MRNET

Network Inference Based on Variable selection
min-redundancy-max-relevance (mRMR) [Meyer et al., 2007]

XMRMR
i = arg max

Xi∈X−K

{I(Xi;Xj)−
1

|K|
∑

Xk∈XK

I(Xi;Xk)}

Bivariate approx. of I(Xi;Xj |XK) → adapted to expression data

State-of-the-art

Method RBN ARACNe Lasso MRNET

Speed/Size - + + +
indirect arcs + - + +
non-linearity + + - +

Package: Bioconductor (5000+ downloads/year/since 2008)
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modENCODE project

Model Organism Encyclopedia Of DNA Elements
(modENCODE) : the most comprehensive collections of
functional datasets for a single organism: D.melanogaster
[Celniker et al., Nature, 2009] (and C.elegans)

4 years of work from 50+ different institutions

Kellis lab (CSAIL MIT + BROAD Institute) coordinating
the integrative analysis to gain insights into the regulatory
circuitry that controls gene expression in response to
changing environments. [The modENCODE Consortium et
al. Science 2010, genome Research 2012]
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Problem

Drosophila melanogaster data:

Publicly available data:

list of >700 known tf
>14k genes
12 Drosophila genomes
139 known tf binding motifs
GO functional terms database
>1000 Protein-Protein Interactions
REDfly data
2 ”big” microarray datasets (Flyatlas + GSE6186)

modENCODE data:

2 RNAseq datasets
2 histone modifications datasets
76 tf-binding experiments (ChIP full genome)

→ Transcriptional network?
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ChIP-binding based network

Binding experiments for 76 tfs (full genome)

cond. tf chrom. peakStart peakEnd intensity

t1 CG1674 chr2L 1 5954 0.9

... ... ... ... ... ...

→ threshold on intensity
but lots of non-functional binding (not intensity dependent)
Gene annotation file from flybase.org

name chrom txStart txEnd cdsStart cdsEnd

CG1678 chr4 251355 266500 252579 266389

... ... ... ... ... ...

→There is a link if binding near (+ - 500bp) of txStart
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ChIP-binding based network (2)

For all tf-tg pairs, an edge weight is

0 if no binding evidence at 500 bp near txStart

0.1 if no data for a tf

1 if binding

→

tf w tg

X1 0.1 X2

Xi 0 Xk

... ... ...

X#tf 1 X#tg
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Binding motif-based network

From flybase.org

DNA sequence

139 known tf binding motifs

→search (GREP) binding motif in the genome.
Problem: to many non-functional binding motifs

gene annotation file

name chrom txStart txEnd cdsStart cdsEnd

CG1674 chr4 251355 266500 252579 266389

... ... ... ... ... ...

→There is a link if tf motif near (+ - 500bp) of txStart
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Binding motif-based network (2)

Use 12 Drosophila genomes with Branch Length Score (BLS)
confidence [Kheradpour et al., gen.res., 2007]

→

tf w tg

X1 0.1 X2

Xi 0 Xk

... ... ...

X#tf 0.83 X#tg
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Expression based Networks

Two steps:

1 Co-expression network: compute MI/correlation for all
couples of genes
but false positive trends because of indirect links
Assume X1 influence X3 through X2

X2
↙
↘

X1

l
X3

Then I(X1;X2) and I(X2;X3) will be high
but also I(X1;X2), hence it adds a false link between X1

and X3.
2 Use an indirect-arc elimination algorithm on the

correlation/MIM matrix.
ARACNE [Margolin et al, BMC Bioinfo, 2006]
MRNET [Meyer et al., BMC Bioinfo., 2008]
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Principle

Networks from sequence and/or tf binding

pro: physical connections (directed)
issue: elimination of non functional bindings

Networks from expression and/or chromatin data

pro: functional connections (but undirected)
issue: elimination of indirect interactions

G1
↙
↘

G2

l
G3

→ combine physical and functional networks to extract direct
functional interactions
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Chromatin regulation with histone modification

Chromatin can compact the genome up to 40000 times

5 families: H1, H2A, H2B, H3, H4
The single-letter amino acid abbreviation (e.g., K for
Lysine) and the amino acid position in the protein
The type of modification: 4 modifications: me1, me2,
me3, ac

→ H3K4me1 denotes the monomethylation of the 4th residue
(a lysine) from the start of the H3 protein.
51 distinct chromatin states suggests distinct biological roles
(Ernst et al. Nature 2010).
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Co-chromatin network

We have two datasets of measurements (ChIP)

Ts: H3K4me1, H3K4me3, H3K9me3, H3K27me3,
H3K27ac, H3K9ac

Ct: H3K4me2, H4K16ac, H3K36me1, H3K36me3,
H3K79me1, H3K79me2, H3K23ac, H3K18ac, H4K12ac,
H4K5ac, H2BK5ac, H4K8ac.
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Functional networks

gene M A R K 1 M A R K 2 ...

tf 1 1 0 0 0 0 1 1 1 0 ...

tg 1 0 0 0 0 0 1 1 1 1 ...

squared Spearman correlation between

tf and tg chromatin profiles (2 datasets)
→ 2 co-chromatin networks

tf and tg expression profiles (3 datasets)
→ 3 co-expression networks

1 expression dataset kept for validation

→ 5 functional networks inferred + 2 physical networks
inferred (ChIP and motif)
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Consensus Networks
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Supervised Network

Method: supervised logistic regression

Weight wij from tf i to tg j, woutput
ij = 1

1+e−m

m = α0 + αmotifw
motif
ij + αChIPw

ChIP
ij +

αchromtcw
chromtc
ij + αchromclw

chromcl
ij +

αRNAseqtcw
RNAseqtc
ij +αarraytcw

arraytc
ij +αflyatlasw

flyatlas
ij

10 fold cross-validation

positive set: random sampling (with replacement) of 2k
interactions of the 233 REDfly interactions

negative set: random sampling of 2k interactions out of
the 7k non-REDfly interactions

fitting using iterative reweighted least squares

final network: 318k edges (0.6 confidence)
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REDfly PR-Curves
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Chromatin CL
RNA-seq
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Logistic regression weights: αmotif,chromtc = 2,
αChIP,chromcl,RNAseq = 1, αarray,flyatlas = 0.4
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Structural properties: degree distributions

Similar to E.coli and S.Cerevisae known network topology
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Most frequent three-nodes patterns
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Biological Insights on co-targeted genes

TF

TG
i

TG
j

Compared to

PPI

TF

TG
i

TG
kPPI

Is the inferred network enriched in:

1 protein-protein interactions(PPI)

2 co-expressed in developmental cycle (RNAseq)

3 similar function profiles (GO terms)
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Results

Fold enrichment of co-targeted genes

network PPI GO RNAseq

motif 1.39 1.06 1.08

ChIP 1.24 1.23 1.46

unsupervised 1.53 1.44 3.07

supervised 1.58 1.55 3.62
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Results

Our integrative networks outperform feature-specific networks

PR-Curves on REDfly

Enrichment of co-targeted genes on PPI, expression and
GO terms

Our integrative networks fit known topological properties
observed in E.coli and S.cerevisae

In-degree and out-degree

Most frequent three-nodes patterns
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http://homepage.meyerp.com

Thank you!

Questions ?
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