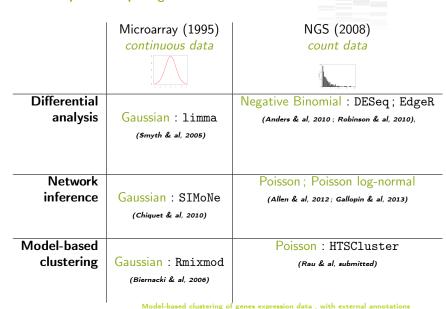


Model-based clustering of genes expression data with external annotations Mélina Gallopin, Gilles Celeux, Florence Jaffrézic, Andrea Rau

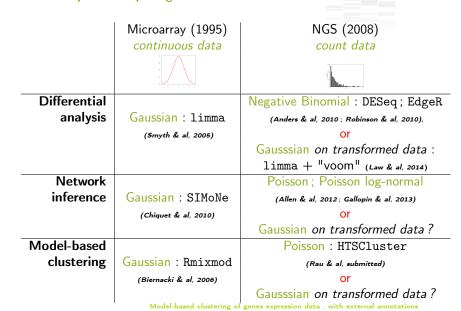
Université Paris Sud 11 INRA, Jouy-en-Josas

RNA-seq data

	Sample 2
	
Gene 1	Gene 2

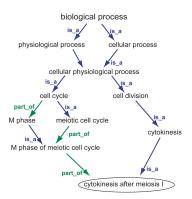

Gene .	L	G	ene z		
E1	E2	E3	E4	E5	E6
4	0	6	1	0	5
19	18	20	7	1	8
2724	2209	13	49	193	548
0	0	48	0	0	0
57	29	224	49	202	92
1904	129	4	507	3	5365
3	13	239	683	158	40
	E1 4 19 2724 0 57 1904	E1 E2 4 0 19 18 2724 2209 0 0 57 29 1904 129	E1 E2 E3 4 0 6 19 18 20 2724 2209 13 0 0 48 57 29 224 1904 129 4	E1 E2 E3 E4 4 0 6 1 19 18 20 7 2724 2209 13 49 0 0 48 0 57 29 224 49 1904 129 4 507	E1 E2 E3 E4 E5 4 0 6 1 0 19 18 20 7 1 2724 2209 13 49 193 0 0 48 0 0 57 29 224 49 202 1904 129 4 507 3

Analysis of RNA-seq data


Methods developed and R packages

	Microarray (1995) continuous data	NGS (2008) count data
Differential analysis	Gaussian : limma (Smyth & al, 2005)	
Network inference	Gaussian : SIMoNe (Chiquet & al. 2010)	
Model-based clustering	Gaussian: Rmixmod (Biernacki & al, 2006)	

Analysis of RNA-seq data Methods developed and R packages



Analysis of RNA-seq data Methods developed and R packages

External information on genes functions

Gene Ontology terms (GO terms)

Example : GO annotations for the RPS6KA2 gene

- regulation of meiosis (GO :0040020)
- stress-activated MAPK cascade (GO :0051403)
- ▶ neurotrophin TRK receptor signaling pathway (GO :0048011)
- ▶ .

Taking external knowledge into account in model-based clustering

Option 1 : Use external gene annotation only to validate clusters

⇒ does not use external information in clusters estimation

Option 2: Incorporate external gene annotation into the mixture model

 \Rightarrow use external information... to what extent?

Our solution:

Include external gene annotation in model selection only

Model-based clustering of genes

Microarray or RNA-seq gene expression data

 $ightharpoonup \mathbf{y}_{(n \times d)}$ matrix of expression data

	sam. 1	sam.2	sam.3	sam. <i>j</i>	
gene 1	478	425	718		
gene 2	15	0	86		
gene 3	678	875	767		
gene 4	3	0	0		
gene 5	13878	20078	19082		
gene i				. y _{ij}	

- ▶ Mixture of K components : $f(\mathbf{y}_i; K, \Theta_K) = \sum_{k=1}^K p_k f_k(\mathbf{y}_i, \mathbf{a}_k)$
- Latent variable : **z** matrix of size $n \times K$ $z_{ik} = 1$ if gene *i* comes from component k $z_{ik} = 0$ otherwise.

Model selection for mixture model

We select the number of clusters $K = 1, ..., K^{max}$ that maximizes one of the following criteria:

Bayesian Information Criterion (BIC): Schwarz, 1978

$$\mathsf{BIC}(K) = \log f(\mathbf{y}|\hat{\theta}) - \frac{\nu_K}{2}\log(n)$$

▶ Integrated Completed Likelihood (ICL): Biernacki et al., 2000

$$\mathsf{ICL}(K) = \mathsf{BIC}(K) + \sum_{i,k} \hat{z}_{ik} \log(\hat{t}_{ik})$$

► Taking into account an external classification: Baudry et al., 2014

$$SICL(K) = ICL(K) + \sum_{l=1}^{U} \sum_{k=1}^{K} n_{kl} \log(\frac{n_{kl}}{n_{k.}})$$

GO annotation variables

 \mathbf{go}^m : vector summarizing the gene annotations for a given GO term m

		у			\mathbf{go}^1	\mathbf{go}^2
gene 1					1	0
gene 2				.	1	0
gene 3				.	1	1
gene 4				.	0	0
gene 5					0	0
gene i		Уij	•		u _i ¹	u _i ²

GO annotations:

$$\mathbf{go}_i^m = \begin{cases} 1 & \text{if gene } i \text{ is annotated for the GO term } m \\ 0 & \text{if gene } i \text{ is not annotated for the GO term } m \\ 0 & \text{if we do not have any information (missing data)} \end{cases}$$

Taking GO annotations into account

Allocation of annotated genes $a^m : n \times K$ matrix

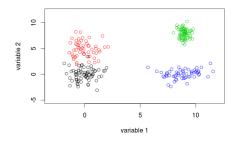
$$a_{ik}^m = egin{cases} 1 & ext{with probability } p_k^m ext{ if } ext{go}_i^m = 1 \ 0 & ext{if } ext{go}_i^m = 0 \end{cases}$$

Our model selection criterion ICaL:

$$\begin{split} \log f(\mathbf{y}, \mathbf{z}, \mathbf{a}^m; K) &= \log \int_{\theta_K} f(\mathbf{y}, \mathbf{z}, \mathbf{a}^m; K, \theta_K) \pi(\theta|K) d\theta \\ &\simeq \mathsf{ICL}(K) + \sum_{k=1}^K n_k^m \log(\frac{n_k^m}{n^m}) \\ & n^m = \mathsf{card}\{i: u_i^m = 1\} \\ & n_k^m = \mathsf{card}\{i: z_{ik} = 1 \text{ et } u_i^m = 1\} \end{split}$$

Model selection criterion ICaL in practice

ICaL(K) = ICL(K) +
$$\sum_{m=1}^{M} \sum_{k=1}^{K} n_k^m \log(\frac{n_k^m}{n^m})$$

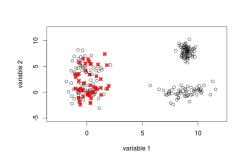

Example : ICaL and SICL penalty terms for 4 GO terms for a given clustering of 500 genes in 5 clusters

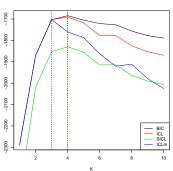
	n_k^m contingency table	go^1	go^2	go^3	go^4
	cluster $k = 1$ (100 genes)	50	48	10	25
	cluster $k = 2$ (100 genes)	0	2	10	25
	cluster $k = 3$ (100 genes)	0	0	10	0
	cluster $k = 4$ (100 genes)	0	0	10	0
	cluster $k = 5$ (100 genes)	0	0	10	0
	m				
pen. _{ICaL}	$\sum_{k=1}^{K} n_k^m \log(\frac{n_k^m}{n^m})$	0	-8.4	-80.4	-34.7
pen. _{S<i>ICL</i>}	$\sum_{l=1}^{U} \sum_{k=1}^{K} n_{kl} \log\left(\frac{n_{kl}}{n_{k.}}\right)$	-69.3	-235.5	-162.5	-112.5

Numerical example

Simulated dataset:

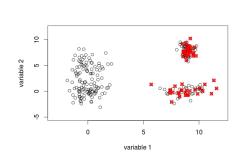
- ▶ 200 genes
- ▶ 2 samples
- 4 gaussian components

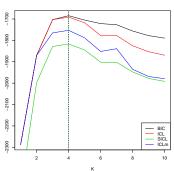

On 100 replicated datasets:


K	1	2	3	4	5	6	7	8
BIC	0	0	19	81	2	0	0	0
ICI	0	0	53	47	0	0	0	0

Relevant GO annotation

Shared by genes in components 1 and 2




K	1	2	3	4	5	6	7	8
BIC	0	0	19	81	2	0	0	0
ICL	0	0	53	47	0	0	0	0
SICL	0	0	51	49	0	0	0	0
ICaL	0	0	100	0	0	0	0	0

Non-relevant GO annotation

Shared by genes in components 3 and 4

K	1	2	3	4	5	6	7	8
BIC	0	0	19	81	2	0	0	0
ICL	0	0	53	47	0	0	0	0
SICL	0	0	53	47	0	0	0	0
ICaL	0	0	53	47	0	0	0	0

Real datasets analysis

Expression Differences along Porcine Small Intestine Evidenced by Transcriptome Sequencing, Mach & al, 2014

- ▶ Differential expression analysis between the 3 tissues sequenced by RNA-seq in 4 healthy piglets (using R package EdgeR with an adjustment for any baseline differences between piglets and FDR control fixed to 0.05 %)
- ► Clustering of the 1844 differentially expressed genes using Gaussian mixture model (using R package Rmixmod with 10 initialisations)
- ▶ Genes annotations from the MSigDB database (Liberzon, 2011)

 ⇒ we selected 6 GO terms from the BP ontology: carboxylic acid
 metabolic process, lipid metabolic process, organic acid metabolic process,
 nitrogen compound metabolic process, response to chem- ical stimulus
 and cellular lipid metabolic process
- Model selection performed with BIC, ICL, SICL and ICaL

Criterion comparison

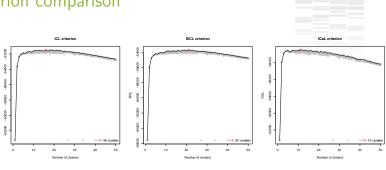


Figure: ICL, SICL et ICaL selected models

- ightharpoonup ICL model : 16 clusters ightarrow 3 associations between GO and clusters
- lacktriangle SICL model : 21 clusters ightarrow 5 associations between GO and clusters
- ightharpoonup ICaL model : 11 clusters ightarrow 6 associations between GO and clusters
- \Rightarrow cluster 11 in the ICaL model might be of particular interest.

Conclusion

On model selection for model-based gene clustering

- improve the existing model-based clustering methods with external annotations
- with the guarantee that those external annotations do not damage the clustering

General conclusion

- more work on finding the best transformation for RNA-seq for clustering and network inference
- more work on network inference on modules of genes

Thanks for your attention

- Mach, N., Berri, M., Esquerré, D., Chevaleyre, C., Lemonnier, G., Billon, Y., Lepage, P., Oswald, I., Doré, J., Rogel-Gaillard, C., Estellé, J. (2014) Extensive Expression Differences along Porcine Small Intestine Evidenced by Transcriptome Sequencing. PLoS ONE 9(2):e88515.
- Liberzon A1, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. (2011) *Molecular signatures database* (MSigDB) 3.0.. Bioinformatics. 2011 Jun 15;27(12):1739-40.
- Biernacki, C., Celeux, G., Govaert, G. (2000) Assessing a mixture model for clustering with the Integrated Classification Likelihood. IEEE Transaction on PAMI, 22, 719-725.
- Baudry, J-P., Cardoso, M., Celeux, G., Amorim, M-J., Sousa Ferreira, A. (2014) *Enhancing the selection of a model-based clustering with external qualitative variables*. Advances in Data Analysis and Classification (ADAC).