Graphical Model Structure Inference Using Trees

Loïc Schwaller, Stéphane Robin, Michael Stumpf

INRA MIA/AgroParisTech Imperial College London

Netbio September 19 2014

Introduction

Graphical Models & Trees Chow & Liu Algorithm

Inference using Trees

Pseudo-Posterior on Trees Matrix-Tree Theorem Algorithm Remarks

Simulations

Chow & Liu comparison Inference Results RAF Network

Conclusion

Graphical Models

• $\mathbf{X} = (X_1, ..., X_p)$ random vector

Graphical Models

- $\mathbf{X} = (X_1, ..., X_p)$ random vector
- $G = (V, E_G)$ undirected graph with $V = \{1, ..., p\}$

Graphical Models

• $\mathbf{X} = (X_1, ..., X_p)$ random vector

• $G = (V, E_G)$ undirected graph with $V = \{1, ..., p\}$

Definition

A graphical model following G is a probabilistic model for which the conditional independence structure of **X** is given by G.

 $m_G = (G, \mathcal{F}_G)$

Loïc Schwaller

Graph

Graph

$$\mathbf{x}^{(1)} = (x_1^{(1)}, \dots, x_8^{(1)})$$
$$\mathbf{x}^{(2)} = (x_1^{(2)}, \dots, x_8^{(2)})$$

$$\mathbf{x}^{(n)} = (x_1^{(n)}, ..., x_8^{(n)})$$

Graph

$$\mathbf{x}^{(1)} = (x_1^{(1)}, ..., x_8^{(1)})$$
$$\mathbf{x}^{(2)} = (x_1^{(2)}, ..., x_8^{(2)})$$

$$\mathbf{x}^{(n)} = (x_1^{(n)}, ..., x_8^{(n)})$$

Spanning Trees

Spanning Tree

A spanning tree T on the set of vertices V is a connected graph with no cycles.

 $\mathcal{T} = \{ \text{spanning trees} \}$

Tree distribution

► T spanning tree

$$P_{\mathcal{T}}(\mathbf{x}) = \prod_{i \in V} p_i(x_i) \prod_{\{i,j\} \in E_{\mathcal{T}}} \frac{p_{ij}(x_i, x_j)}{p_i(x_i)p_j(x_j)}$$

Loïc Schwaller

Chow & Liu Algorithm¹

X = (X₁,...,X_p) random discrete vector
 D = (x⁽¹⁾,...,x⁽ⁿ⁾) i.i.d. sample

¹C.K. Chow and C.N. Liu. "Approximating Discrete Probability Distributions with Dependence Trees". In: *IEEE Transactions on Information Theory* IT-14.3 (1968), pp. 462–467

Chow & Liu Algorithm¹

X = (X₁,...,X_p) random discrete vector
 D = (x⁽¹⁾,...,x⁽ⁿ⁾) i.i.d. sample

Aim: finding P_T maximizing the likelihood of D.

¹C.K. Chow and C.N. Liu. "Approximating Discrete Probability Distributions with Dependence Trees". In: *IEEE Transactions on Information Theory* IT-14.3 (1968), pp. 462–467

Chow & Liu Algorithm

X = (X₁,...,X_p) random discrete vector
 D = (x⁽¹⁾,...,x⁽ⁿ⁾) i.i.d. sample

Log-Likelihood

$$l_{P_{\mathcal{T}}}(D) = \sum_{k=1}^{n} log\left(P_{\mathcal{T}}(x^{(k)})\right)$$

Chow & Liu Algorithm

X = (X₁,...,X_p) random discrete vector
 D = (x⁽¹⁾,...,x⁽ⁿ⁾) i.i.d. sample

T fixed

$$\max_{P_{\mathcal{T}}} l_{P_{\mathcal{T}}}(D) = \max_{P_{\mathcal{T}}} \sum_{k=1}^{n} \log\left(P_{\mathcal{T}}(x^{(k)})\right)$$

Chow & Liu Algorithm

X = (X₁,...,X_p) random discrete vector
 D = (x⁽¹⁾,...,x⁽ⁿ⁾) i.i.d. sample

T fixed

$$\max_{P_{T}} l_{P_{T}}(D) = \max_{P_{T}} \sum_{k=1}^{n} log\left(P_{T}(x^{(k)})\right)$$
$$= l_{\widehat{P}_{T}}(D)$$
$$= \sum_{\{i,j\}\in E_{T}} \widehat{l}(X_{i}, X_{j}) + K$$

*P*_T empirical distribution on *T Î*(*X_i*, *X_j*) empirical mutual information between *X_i* and *X_j*.

$$\max_{P_{\mathcal{T}}} l_{P_{\mathcal{T}}}(D) = \sum_{\{i,j\} \in E_{\mathcal{T}}} \widehat{l}(X_i, X_j) + K$$

$$\max_{P_{\mathcal{T}}} l_{P_{\mathcal{T}}}(D) = \sum_{\{i,j\} \in E_{\mathcal{T}}} \widehat{I}(X_i, X_j) + K$$

$$\mathsf{edge}\ \{i,j\} \longleftarrow \widehat{I}(X_i,X_j)$$

$$\max_{P_{T}} l_{P_{T}}(D) = \sum_{\{i,j\} \in E_{T}} \widehat{I}(X_{i}, X_{j}) + K$$

tree
$$T \leftarrow \sum_{\{i,j\}\in E_T} \widehat{I}(X_i, X_j)$$

$$\max_{P_{\mathcal{T}}} l_{P_{\mathcal{T}}}(D) = \sum_{\{i,j\} \in E_{\mathcal{T}}} \widehat{I}(X_i, X_j) + K$$

tree
$$T' \leftarrow \sum_{\{i,j\}\in E_{T'}} \widehat{I}(X_i, X_j)$$

$$\max_{P_{\mathcal{T}}} l_{P_{\mathcal{T}}}(D) = \sum_{\{i,j\} \in E_{\mathcal{T}}} \widehat{I}(X_i, X_j) + K$$

Maximum Spanning Tree Problem¹

¹Joseph B. Kruskal. "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem". In: Proceedings of the American Mathematical Society 7.1 (Feb. 1956), pp. 48–50

$$\max_{P_{\mathcal{T}}} l_{P_{\mathcal{T}}}(D) = \sum_{\{i,j\} \in \mathcal{E}_{\mathcal{T}}} \widehat{I}(X_i, X_j) + K$$

Maximum Spanning Tree Problem¹

Best Tree
$$T^* \longrightarrow$$
 Best Distribution \widehat{P}_{T^*}

¹Joseph B. Kruskal. "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem". In: Proceedings of the American Mathematical Society 7.1 (Feb. 1956), pp. 48–50

Loïc Schwaller

Introduction

Algorithm

Input : $\mathbf{D} = {\mathbf{x}^1, ..., \mathbf{x}^n}$ *MaxSpanningTree* procedure **Output**: best Tree structure *T* best Tree distribution P_T

for each edge $\{i, j\}$ do Compute empirical frequencies $\widehat{\gamma_{ij}}$ and $\widehat{\gamma_i}$; Compute empirical MI $\widehat{I}(X_i, X_j)$; end

$$T \longleftarrow MaxSpanningTree(\hat{I}) ;$$
$$P_T \longleftarrow \hat{P}_T.$$

Introduction

Graphical Models & Trees Chow & Liu Algorithm

Inference using Trees

Pseudo-Posterior on Trees Matrix-Tree Theorem Algorithm Remarks

Simulations

Chow & Liu comparison Inference Results RAF Network

Conclusion

Rationale

- T* (unknow) underlying tree
- $\mathcal{T} = \{ \text{Trees on } V \}$

$$\mathbf{1}_{\{k,l\}}(\mathcal{T}) = \left\{egin{array}{cc} 1 & ext{if } \{k,l\} \in E_{\mathcal{T}} \ 0 & ext{otherwise} \end{array}
ight.$$

Posterior probability of an edge

$$p(\{k, l\} \in E_{T^*}|D) = \sum_{T \in \mathcal{T}} \mathbf{1}_{\{k, l\}}(T)p(T|D)$$

•
$$D = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)})$$
 i.i.d. sample

 $P(T|D) \propto P(D|T)P(T)$

• $D = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)})$ i.i.d. sample

 $P(T|D) \propto P(D|T)P(T)$

• Prior P(T)

 $\mathcal{U}(\mathcal{T})$

•
$$D = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)})$$
 i.i.d. sample

 $P(T|D) \propto P(D|T)P(T)$

• Prior P(T)

 $\mathcal{U}(\mathcal{T})$

• Marginal Likelihood P(D|T)

$$P(D|T) = \int P_T(D)\rho(P_T)dP_T$$

•
$$D = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)})$$
 i.i.d. sample

 $P(T|D) \propto P(D|T)P(T)$

• Prior P(T)

 $\mathcal{U}(\mathcal{T})$

• Marginal Likelihood P(D|T)

$$P(D|T) \approx \widehat{P}_T(D)$$

$$\widehat{P}_{T}(D) = \exp\left(l_{\widehat{P}_{T}}(D)\right)$$

$$\widehat{P}_{\mathcal{T}}(D) = \exp\left(l_{\widehat{P}_{\mathcal{T}}}(D)\right)$$
$$\propto \exp\left(\sum_{\{i,j\}\in E_{\mathcal{T}}}\widehat{I}(X_i, X_j)\right)$$

$$\widehat{P}_{\mathcal{T}}(D) = \exp\left(l_{\widehat{P}_{\mathcal{T}}}(D)\right)$$
$$\propto \exp\left(\sum_{\{i,j\}\in E_{\mathcal{T}}}\widehat{I}(X_i, X_j)\right)$$
$$\propto \prod_{\{i,j\}\in E_{\mathcal{T}}}\omega_{ij}(D)$$

$$\omega_{ij}(D) = \exp\left(\widehat{I}(X_i, X_j)\right)$$

$$\blacktriangleright \widehat{P}_{T}(D) \propto \prod_{\{i,j\}\in E_{T}} \omega_{ij}(D)$$

•
$$P(T|D) \propto P(D|T)$$

(since $P(T) \sim U(T)$)
Pseudo-Posterior Distribution on Trees

$$\blacktriangleright \widehat{P}_{T}(D) \propto \prod_{\{i,j\}\in E_{T}} \omega_{ij}(D)$$

 $\blacktriangleright P(T|D) \propto P(D|T)$

(since $P(T) \sim U(T)$)

$$P(T|D) \approx \frac{1}{Z} \prod_{\{i,j\} \in E_T} \omega_{ij}(D)$$

$$Z = \sum_{T \in \mathcal{T}} \prod_{\{i,j\} \in E_T} \omega_{ij}(D)$$

Matrix-Tree Theorem

 $\omega = (\omega_{ij})$ symmetric weight matrix ($\forall i, \omega_{ii} = 0$)

Laplacian Matrix

The Laplacian matrix $Q = (Q_{ij})$ relatively to the weights ω is given by

$$Q_{ij} = \begin{cases} -\omega_{ij} & \text{if } i \neq j \\ \sum_{j} \omega_{ij} & \text{if } i = j \end{cases}$$

Matrix-Tree Theorem

Theorem

Let Q be the Laplacian matrix associated to weights ω . Let \overline{Q}_{ij} denote the $(i, j)^{th}$ minor of Q.

- All \overline{Q}_{ij} are equal.
- The following identity holds

$$\sum_{\mathcal{T}\in\mathcal{T}}\prod_{\{i,j\}\in E_{\mathcal{T}}}\omega_{ij}=\overline{Q}_{ij}$$

Seth Chaiken. A Combinatorial Proof of the All Minors Matrix Tree Theorem. 1982

In Practice

$$p(\{k, l\} \in E_{T^*}|D) = \sum_{T \in T} \mathbf{1}_{\{k, l\}}(T)p(T|D)$$

In Practice

$$p(\{k, l\} \in E_{T^*}|D) = \sum_{T \in T} \mathbf{1}_{\{k, l\}}(T)p(T|D)$$

$$p(\{k,l\} \in E_{T^*}|D) \approx 1 - \frac{Z^{(kl)}}{Z}$$

$$Z = \sum_{T \in \mathcal{T}} \prod_{\{i,j\} \in E_T} \omega_{ij}(D)$$
$$Z^{(kl)} = \sum_{T \not\ni \{k,l\}} \prod_{\{i,j\} \in E_T} \omega_{ij}(D)$$

In Practice

$$p(\{k, l\} \in E_{T^*}|D) = \sum_{T \in T} \mathbf{1}_{\{k, l\}}(T)p(T|D)$$

$$p(\{k,l\} \in E_{T^*}|D) \approx 1 - \frac{Z^{(kl)}}{Z}$$

$$\begin{split} \omega(D) &\longrightarrow Z\\ \omega^{(kl)}(D) &\longrightarrow Z^{(kl)}\\ \omega^{(kl)}_{ij}(D) = \begin{cases} 0 & \text{if } \{i,j\} = \{k,l\}\\ \omega_{ij}(D) & \text{otherwise} \end{cases} \end{split}$$

Algorithm

end

```
Compute \omega from \widehat{I};

Z \longleftarrow MatTree(\omega);

for each edge \{i, j\} do

\begin{vmatrix} Z^{(ij)} \longleftarrow MatTree(\omega^{(ij)}); \\ \alpha_{ij} \longleftarrow 1 - \frac{Z^{(ij)}}{Z}.

end
```

Real Posterior Distribution

$$P(T|\mathbf{x}) \propto P(\mathbf{x}|T)P(T)$$

• Prior P(T)

 $\mathcal{U}(\mathcal{T})$

• Marginal Likelihood $P(\mathbf{x}|T)$

$$P(\mathbf{x}|T) = \int P_T(\mathbf{x})\rho_T(P_T)dP_T$$

Real Posterior Distribution

• Particular choice of prior ρ_T

Strong Compatible Hyper Markov prior

$$P(\mathbf{x}|T) = \prod_{i \in V} f_i(x_i) \prod_{\{i,j\} \in E_T} \frac{f_{ij}(x_i, x_j)}{f_i(x_i)f_j(x_j)}$$

$$f_{ij}(x_i, x_j) = \int P_{ij}(x_i, x_j) \rho_{ij}(P_{ij}) dP_{ij}$$
$$f_i(x_i) = \int P_i(x_i) \rho_i(P_i) dP_i$$

Real Posterior Distribution

- Particular choice of prior ρ_T
 - Strong Compatible Hyper Markov prior

$$P(\mathbf{x}|T) \propto \prod_{\{i,j\}\in E_T} \omega_{ij}(x_i, x_j)$$

$$\omega_{ij}(x_i, x_j) = \frac{f_{ij}(x_i, x_j)}{f_i(x_i)f_j(x_j)}$$

Loïc Schwaller

Real Posterior Distribution

- Particular choice of prior ρ_T
 - Strong Compatible Hyper Markov prior

- Gaussian distribution with Normal-Wishart prior
- Multinomial distribution with Dirichlet prior

Introduction

Graphical Models & Trees Chow & Liu Algorithm

Inference using Trees

Pseudo-Posterior on Trees Matrix-Tree Theorem Algorithm Remarks

Simulations

Chow & Liu comparison Inference Results RAF Network

Conclusion

Simulation Scheme

- Choice of a size (p = 25) and topology (*Tree, Hub, Erdös-Rényi*)
- ► A ← undirected adjacency matrix
- ► **Λ** ← precision matrix

$$\blacktriangleright \Lambda \longleftarrow -\mathbf{A} + 3I_p$$

► Σ ← Λ⁻¹

$$y^{(i)} \sim \mathcal{N}(0, \Sigma)$$
 i.i.d.
 $x^{(i)} \leftarrow discretize(y^{(i)}, d = 5)$
 $i = 1, ..., n$
 $n = 25, 50, 75, 100$
10 repetitions per sample size

Chow & Liu VS Pseudo-posterior

Chow & Liu

- Tree structure with (p-1) edges
- Pseudo-posterior on Tree
 - (p-1) most probable edges

Assessment

True Positive Rate (TPR) for (p-1) edges

Τ

False Positive Rate (FPR) for (p-1) edges

$$PR = \frac{TP}{P}$$
 $FPR = \frac{FP}{N}$

Tree

Tree

Figure: 25 Nodes.

Hub

Hub

Figure: 25 Nodes.

Erdös-Rényi

Erdös-Rényi

Figure: 25 Nodes, Connection Probability 2/p

Inference Methods

- Partial Order MCMC³
 - Structure sampling

Pseudo-posterior on Trees

³Teppo Niinimaki, Pekka Parviainen, and Mikko Koivisto. "Partial Order MCMC for Structure Discovery in Bayesian Networks." In: *UAI*. ed. by Fabio Gagliardi Cozman and Avi Pfeffer. 2011

PR Curve

Assessment

ROC Curve

Loïc Schwaller

Tree

Tree

Figure: 25 Nodes.

Hub

Hub

Figure: 25 Nodes.

Erdös-Rényi

Erdös-Rényi

Figure: 25 Nodes, Connection Probability 2/p

Erdös-Rényi

Erdös-Rényi

Figure: 25 Nodes, Connection Probability 4/p

Running Time

Network Size	MCMC	Tree
p=25	17 s	0.6 s
p=50	317.5 s	2.8 s
p=75	1913.7 s	7.6 s

Figure: Running Time for MCMC & Tree inference. Sample of size n = 100, d = 10 levels per variable.

RAF Network⁴

Figure: Cellular signalling network describing the interactions of 11 phosphorylated proteins and phospholipids in human immune cells.

⁴Adriano V. Werhli, Marco Grzegorczyk, and Dirk Husmeier. Comparative Evaluation of Reverse Engineering Gene Regulatory Networks with Relevance Networks, Graphical Gaussian Models and Bayesian Networks. 2006.

RAF Network

- ▶ 5 samples of size n=100
- ▶ Continuous data, discretized at d=10

	MCMC	Tree
ROC	0.67	0.74
PR	0.59	0.63

RAF Network

Introduction

Graphical Models & Trees Chow & Liu Algorithm

Inference using Trees

Pseudo-Posterior on Trees Matrix-Tree Theorem Algorithm Remarks

Simulations

Chow & Liu comparison Inference Results RAF Network

Conclusion
Conclusion

- Build on the work of Chow & Liu
- Algebraic theorem to compute the pseudo-posterior on Trees
 - Matrix-Tree theorem
- Broad Framework
 - Pseudo-posterior
 - Posterior

Perspectives

General method

- Posterior probability of an edge
- Posterior probability of more complexe motifs (fork, chain, etc)
- Network Comparison

	 _	

Seth Chaiken. A Combinatorial Proof of the All Minors Matrix Tree Theorem. 1982.

C.K. Chow and C.N. Liu. "Approximating Discrete Probability Distributions with Dependence Trees". In: *IEEE Transactions on Information Theory* IT-14.3 (1968), pp. 462–467.

Joseph B. Kruskal. "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem". In: *Proceedings of the American Mathematical Society* 7.1 (Feb. 1956), pp. 48–50.

Teppo Niinimaki, Pekka Parviainen, and Mikko Koivisto. "Partial Order MCMC for Structure Discovery in Bayesian Networks." In: *UAI*. Ed. by Fabio Gagliardi Cozman and Avi Pfeffer. 2011.

Adriano V. Werhli, Marco Grzegorczyk, and Dirk Husmeier. Comparative Evaluation of Reverse Engineering Gene Regulatory Networks with Relevance Networks, Graphical Gaussian Models and Bayesian Networks. 2006.