Influential Observations in a Graphical Model

Avner Bar-Hen

MAP5, Paris Descartes

Joint work with Jean-Michel Poggi (LMO, Paris Sud, Orsay & Paris Descartes)

A. Bar Hen — J-M. Poggi Influential Observations for Graphical Models

Let $X = (X_1, ..., X_p) \sim \mathcal{N}_p(\mu, \Sigma)$ be a *p*-dimensional multivariate normal distributed random variable supposed to be such that Σ is invertible

- Graphical models encode random variables and their conditional dependencies
- ► Directed acyclic graph in which nodes Γ = {1,..., p} represent random variables and edges represent conditional probabilistic dependencies among them
- A pair (a, b) is in the set of edges if and only if X_a is dependent on X_b conditionally to the remaining variables {X_k, k ∈ Γ \ {a, b}}
- cor(X_a, X_b|{X_k, k ∈ Γ \ {a, b}}) = 0 corresponds to a zero entry in Θ = Σ⁻¹

The L1-penalized log-likelihood is

$$\ell_{\lambda}{}^{S}(\Theta) = \log \det \Theta - \operatorname{tr}(\Theta S) - \lambda ||\Theta||_{1}$$

 $\lambda \ge 0$ being the tuning parameter.

•
$$S = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'$$
 is the empirical covariance matrix

• $\hat{\Theta} = \arg \max \ell_{\lambda}{}^{\mathbb{S}}(\Theta)$ is the ML estimate of the inverse of the concentration matrix Σ^{-1}

The non-null entries of $\hat{\Theta}$ define the edges of the estimated graphical model.

Example

- 133 patients with stage I-III breast cancer (Hess et al., 2006) treated with chemotherapy prior to surgery
- Hess et al. (2006), Natowicz et al.(2008) developed and tested a multigene predictor for treatment response on this data set. They focused on a set of 26 genes having a high predictive value
- Patient response to the treatment is classified as either a pathologic complete response (pCR) 34 individuals or a residual disease (not-pCR) 99 individuals
- Data: 26 columns and 133 rows. The nth row gives the expression levels of the 26 identified genes for the nth patient. The p columns are named according to the genes
- Data already considered by Ambroise et al. (2009) and Giraud et al. (2012) : Gaussian Graphical Model to obtain genes interaction graph (L₁-penalized likelihood criterion).

Example: network (R package huge)

Example: PCA

Influence of the observations

What about graph stability?

- Classically robustness deals with model stability (and considered globally)
- Focus on individual observations diagnosis issues rather than model properties or variable selection problems
- We use here Graphical Models to perform diagnosis on observations
- We use influence function, a classical diagnostic method to measure the perturbation induced by a single observation: stability issue through jackknife

Influence function

- ► $X_1, ..., X_n$ r.v. of common distribution function (df) F on \mathbb{R}^p ($p \ge 1$)
- The influence of an infinitesimal perturbation along δ_x on statistic T(F)

$$IC_{T,F}(x) = \lim_{\epsilon \to 0} \frac{T((1-\epsilon)F + \epsilon \delta_x) - T(F)}{\epsilon}$$

- ► Statistic T(F) naturally estimated by $T(F_n)$ where $F_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ is the empirical df
- ► $IC_{T,F_n}(x_i)$ is used to evaluate the importance of an observation $x_i \in \mathbb{R}^p$
- Connection between influence function and jackknife (Miller, 1974): let $F_{n-1}^{(i)} = \frac{1}{n-1} \sum_{j \neq i} \delta_{x_j}$, then $F_n = \frac{n-1}{n} F_{n-1}^{(i)} + \frac{1}{n} \delta_{x_i}$. If $\epsilon = -\frac{1}{n-1}$, we have:

$$\begin{split} IC_{T,F_n}(x_i) &\approx \quad \frac{T\big((1-\epsilon)F_n+\epsilon\,\delta x_i\big)-T\big(F_n\big)}{\epsilon} \\ &\approx \quad (n-1)(T(F_n)-T(F_{n-1}^{(i)})) \end{split}$$

A first remark about jackknifed covariance matrix

•
$$S = \frac{1}{n} \sum_{i}^{n} (X_i - \bar{X}) (X_i - \bar{X})'$$
 covariance matrix

•
$$S_{-j} = \frac{1}{n-1} \sum_{i \neq j} (X_i - \bar{X}_{-j}) (X_i - \bar{X}_{-j})'$$
 jackknifed covariance matrix

It can be shown that

$$\mathbf{S}_{-j} = \frac{n}{n-1}\mathbf{S} - \frac{2}{n}(X_j - \overline{X}_{-j})(X_j - \overline{X}_{-j})'$$

which quantifies the size of the perturbation

$$\ell_{\lambda}{}^{S}(\Theta) = \log \det \Theta - \operatorname{tr}(\Theta S) - \lambda ||\Theta||_{1} \; ; \lambda \geq 0$$

• Θ̂ = arg max ℓ_λ^S(Θ): MLE of Σ⁻¹, the inverse of the concentration matrix, based on X_i, i = 1,..., n

•
$$\widehat{\Theta_{-j}} = \arg \max \ell_{\lambda} S_{-j}(\Theta)$$
: MLE of Σ^{-1} based on $X_i, i \neq j$

Let $\underline{\Theta} = \left(1_{\theta_{ij} \neq 0}\right)_{1 \leqslant i, j \leqslant n}$ a matrix of 0's and 1's: adjacency matrix

Let $l_1(j)$ be the number of edges affected by the removing observation j

$$H_1(j) = \frac{1}{2} || \widehat{\underline{\Theta}} - \widehat{\underline{\Theta_{-j}}} ||_0$$

A first influence index: example

Let $\underline{\Theta} = (\mathbf{1}_{\theta_{ij} \neq 0})_{1 \leqslant i, j \leqslant n}$ a matrix of 0's and 1's

Let $l_1(j)$ be the number of edges affected by the removing observation j (j = 1, ..., 133)

$$I_1(j) = rac{1}{2} || \hat{\underline{\Theta}} - \widehat{\underline{\Theta_{-j}}} ||_0$$

Influential Observations for Graphical Models

Link between influence and likelihood

- Strong links between jackknife and likelihood (influence function as derivative of the statistic)
- the L_1 penalized log-likelihood of S_{-j} can be expressed in terms of S:

$$\ell_{\lambda}^{S_{-j}}(\Theta) = \log \det \Theta - \frac{n}{n-1} \operatorname{tr}(\Theta S) - \frac{1}{n} (x_j - \overline{x}_{-j})' \Theta(x_j - \overline{x}_{-j}) + \lambda ||\Theta||_1$$
$$\ell_{\lambda}^{S_{-j}}(\Theta) = \ell_{\lambda}^{S}(\Theta) - \frac{1}{n} (x_j - \overline{x}_{-j})' \Theta(x_j - \overline{x}_{-j})$$

- The effect is to add a L₂ term that taking into account the contribution of x_j to the penalized likelihood
- A natural definition of influence could be given by $(x_j \overline{x}_{-j})'\hat{\Theta}(x_j \overline{x}_{-j})$

A second influence index

Let $I_2(.)$ be the difference of the likelihoods induced by the removing of one observation

$$\begin{split} l_2(j) &= \ell_{\lambda}^{S}(\hat{\Theta}) - \ell_{\lambda}^{S_{-j}}(\widehat{\Theta_{-j}}) \\ &= \frac{1}{n}(x_j - \overline{x}_{-j})'\hat{\Theta}(x_j - \overline{x}_{-j}) \end{split}$$

Link between the two influence indices on the example

►
$$l_1(j) = \frac{1}{2} ||\hat{\underline{\Theta}} - \widehat{\underline{\Theta_{-j}}}||_0$$
 versus $l_2(j) = \ell_{\lambda}^{S}(\hat{\Theta}) - \ell_{\lambda}^{S_{-j}}(\hat{\Theta_{-j}})$

for the 133 observations of cancer dataset

Fluctuations of maximum likelihood of concentration matrix $(l_2(j))$ is not enough to infer stability of adjacency matrix $(l_1(j))$

Remark: Influence measuring stability of the links through jackknife

Reference graph is generated from the whole dataset and influence of a perturbation induced by the deletion of an observation can be measured by any distance between Θ and Θ_{-i}

Let $J_1(a, b)$ be the number of times that status of edge (a, b) is changed by the removing of one observation

$$J_1(a,b) = \sum_{i=1}^n \mathbb{1}_{\left|\underline{\Theta(a,b)} - \underline{\Theta_{-i}(a,b)}\right| \neq 0}$$

25*26/2=325 possible edges and for each edge the theoretical range of J_1 is between 0 and 133.

The two groups of cancer data set

Patient response to the treatment is classified as either a pathologic complete response (pCR) 34 individuals or a residual disease (not-pCR) 99 individuals

Full dataset	pCR	not-pCR
	10 ¹⁰ 10 ¹⁰ 10 ¹⁰ 10 ¹⁰ 20 ¹⁰ 10 ¹⁰ 00 ¹ 10 ¹⁰ 00 ¹ 10 ¹⁰ 00 ¹⁰ 00 ¹⁰ 10 ¹⁰ 00 ¹⁰ 00 ¹⁰ 10 ¹⁰ 00 ¹⁰ 10 ¹⁰ 00 ¹⁰	

Above influence functions

Which class is the less affected by removing or adding observation i?

- Two classes: pCR/not-pCR and two adjacency matrices $\underline{\Theta}^{(1)}$ and $\underline{\Theta}^{(2)}$
- Let <u>Θ^(k∨i)</u> = <u>Θ^(k)</u> if the observation *i* is from class *k* and <u>Θ^(k∨i)</u> is the adjacency matrix computed from (individuals of class *k* + individual *i*)
- I^k₁(i) be the number of edges of <u>Θ^(k∨i)</u> affected by removing of observation i (k = 1, 2).

$$I^{k}_{1}(i) = \frac{1}{2} || \underline{\widehat{\Theta}^{(k \vee i)}} - \underline{\widehat{\Theta}^{(k \vee i)}_{-i}} ||_{0}$$

For each *i* we can compute arg min_k $I_{1}^{k}(i)$.

Which class is the less affected by removing or adding observation *i*?

Which class is the less affected by removing or adding observation i?

	0	1	Sum
$I_1[,1] > I_1[,2]$	64	13	77
$I_1[, 1] = I_1[, 2]$	29	15	44
$I_1[, 1] < I_1[, 2]$	6	6	12
Sum	99	34	133

- What about iterate But ... one group becomes empty (small group have large variability)
- Second idea: define a class centroid (open question)
- What about stability with respect to starting point (related to centroid definition)

Distributional results for influence index

Two influence indices :

- $I_1(j) = \frac{1}{2} || \underline{\widehat{\Theta}} \underline{\widehat{\Theta_{-j}}} ||_0$
- $\blacktriangleright I_2(j) = \ell_{\lambda}^{S}(\hat{\Theta}) \ell_{\lambda}^{S_{-j}}(\widehat{\Theta_{-j}})$

$$\sqrt{n}\left(l_2(F_n) - l_2(F)\right) \sim \mathcal{N}(0, \sigma^2)$$

But no known relationship between $l_2(F_n) - l_2(F)$ and distance between the induced graph

 l_1 is not a continuous function of Θ (indicator function): not consistent except if $\mathbb{P}(\hat{\underline{\Theta}} = 0) = 0$ (clique)

Well known problem for median as well as for lasso: bolasso is a possible alternative

A glimpse of Bolasso

Idea: If several datasets (with same distributions) are available, intersecting support sets would lead to the correct pattern with high probability

In practice: Bootstrap the data, intersecting the support of the graph

Adaptation: Jackknife the data, intersecting the support of the graph

Bolasso in practice

Homogeneous dataset

Objective : largest group without influence data

Exhaustive search not possible. Peeling strategy:

- 1. Fit "best" graphical model (glasso+stars) on the dataset
- 2. Remove the observation with the largest influence from the dataset
- 3. Fit "best" graphical model (glasso+stars) on the new dataset
- 4. Back to step 2

Questions:

- Is the (penalized) likelihood monotone?
- where to stop the peeling?
- What about the "stable" network?
- What about the "stable" observations?

Peeling in action

References

- Ambroise, C., Chiquet, J., and Matias, C. (2009). Inferring sparse Gaussian graphical models with latent structure. Electron. J. Stat., 3:205–238.
- Bach, F.R. (2008). Bolasso: model consistent Lasso estimation through the bootstrap. Proceedings of ICML '08. 33–40
- Friedman, J., Hastie, T. and Tibshirani R. (2008). Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9:432–441.
- Giraud, C., Huet, S. and Verzelen, N. (2012). Graph selection with GGMselect. SAGMB, Vol. 11 (3) 1544–6115.
- Hess, K.R., Anderson, K., Symmans, W.F., Valero, V., Ibrahim, N., Mejia, J.A., Booser, D., Theriault, R.L., Buzdar, U., Dempsey, P.J., Rouzier, R., Sneige, N., Ross, J.S., Vidaurre, T., Gomez, H.L., Hortobagyi, G.N., and Pustzai, L. (2006). *Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer.* Journal of Clinical Oncology, 24(26):4236-4244.
- Meinshausen N., Bühlmann P. (2006). High-dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34:1436–1462.
- Meinshausen N., Bühlmann P. (2010). Stability selection (with discussion). Journal of the Royal Statistical Society: Series B, 72, 417-473.
- Natowicz, R., Incitti, R., Horta, E.G., Charles, B., Guinot, P., Yan, K., Coutant, C., Andr F., Pusztai, R., and Rouzier, L. (2008). Prediction of the outcome of a preoperative chemotherapy in breast cancer using dna probes that provide information on both complete and incomplete response. BMC Bioinformatics, 0(140)

Thank you for your attention (and your questions)

Model-based clustering

Let's try Gaussian mixture model :

$$f(x) = pf_1(x) + (1-p)f_2(x)$$

where $f_1 \sim \mathcal{N}_{\rho}(\mu_1, \Sigma_1)$ and $f_2 \sim \mathcal{N}_{\rho}(\mu_2, \Sigma_2)$.

Model-based clustering

Mclust: best model: diagonal, varying volume and shape (VVI) with 3 components

	pCR	not-pCR	Sum
1	6	46	52
2	27	16	43
3	1	37	38
Sum	34	99	133
-			

Model-based clustering

Mclust: best model: diagonal, varying volume and shape (VVI) with 2 components

	0	1	Sum
1	29	32	61
2	70	2	72
Sum	99	34	133