Operator-valued Kernel-based models for Gene Regulatory Network Inference

Néhémy Lim^{1,2} Joint work with George Michailidis³, Cédric Auliac¹ and Florence d'Alché-Buc^{2,4}

¹CEA LIST, Gif-sur-Yvette, France
 ²IBISC EA 4526, Université d'Évry Val d'Essonne, Évry, France
 ³Department of Statistics, University of Michigan, USA
 ⁴INRIA-Saclay, LRI umr CNRS 86 23, Université Paris-Sud, Orsay, France

September 12, 2013

Outline

1 Reverse-engineering GRN

- 2 A new framework for network inference
- 3 A novel nonlinear vector autoregressive model
- 4 Learning the OKVAR model
- 5 Numerical studies

Outline

Reverse-engineering GRN

- A new framework for network inference
- 3 A novel nonlinear vector autoregressive model
- 4 Learning the OKVAR model
- Numerical studies
- 6 Conclusion

A B > A B >

Image: A matrix

Example: Gene Regulatory Network

э

A B A A B A

Reverse-engineering GRN

Reconstruction of gene regulatory networks = Identify **direct** interactions from gene expression data

Signed directed graph (*E. coli* subnetwork)

Reverse-engineering GRN

Reconstruction of gene regulatory networks = Identify **direct** interactions from gene expression data (time-series)

Dynamical models and Network inference : State of the art

• Correlations, Mutual Information [Butte *et al.*, 2000; Basso *et al.*, 2005; Faith *et al.*, 2007]

Dynamical models and Network inference : State of the art

• Correlations, Mutual Information [Butte *et al.*, 2000; Basso *et al.*, 2005; Faith *et al.*, 2007]

• Linear models:

- Linear regression [D'Haeseleer, 1999], LASSO [van Someren et al., 2006], linear autoregressive models [Fujita et al., 2007; Shimamura et al., 2009], several-order autoregressive models [Lozano, 2009; Bolstad et al., 2011], Gaussian graphical models [Schäfer & Strimmer, 2005; Charbonnier et al., 2010]
- Granger causality [Shojaie and Michailidis, 2010 and 2011]
- State-space models [Perrin et al., 2003; Rangel et al., 2004]

Dynamical models and Network inference : State of the art

- Correlations, Mutual Information [Butte *et al.*, 2000; Basso *et al.*, 2005; Faith *et al.*, 2007]
- Linear models:
 - Linear regression [D'Haeseleer, 1999], LASSO [van Someren et al., 2006], linear autoregressive models [Fujita et al., 2007; Shimamura et al., 2009], several-order autoregressive models [Lozano, 2009; Bolstad et al., 2011], Gaussian graphical models [Schäfer & Strimmer, 2005; Charbonnier et al., 2010]
 - Granger causality [Shojaie and Michailidis, 2010 and 2011]
 - State-space models [Perrin et al., 2003; Rangel et al., 2004]

Nonlinear models:

- Boolean logic [Liang et al., 1998]
- Ordinary Differential Equations (ODEs) [Chen et al., 1999]
- Bayesian networks [Murphy & Mian, 1999; Friedman et al., 2000; Perrin et al., 2003; Auliac et al., 2008]
- Random forests [Huynh-Thu et al., 2010]
- Non-parametric Gaussian processes [Äijö & Lähdesmäki, 2009]
- Kernels and time-series [Ralaivola et d'Alché-Buc, 2005; Principe et al., 2011; Kallas et al., 2011]

Dynamical models and Network inference

Limitations

- Specific
- Undirected graph
- I inear
- Small systems

Dynamical models and Network inference

Limitations

- Specific
- Undirected graph
- Linear
- Small systems

Requirements

- Generic
- Causality
- Nonlinear
- Scalable

Our approach

- Introduce a general framework for nonlinear multivariate modeling and network inference
- Section 2 Extend the framework of linear modeling to sparse nonlinear modeling

Outline

Reverse-engineering GRN

2 A new framework for network inference

- 3 A novel nonlinear vector autoregressive model
- 4 Learning the OKVAR model
- 5 Numerical studies
- 6 Conclusion

(日) (四) (日) (日) (日)

Modeling nonlinear dynamical systems

Model assumptions

The temporal evolution of the system is ruled by a **first-order stationary** nonlinear model $h : \mathbb{R}^d \to \mathbb{R}^d$:

$$\mathbf{x}_{t+1} = h(\mathbf{x}_t) + \mathbf{u}_t \tag{1}$$

where

• $\mathbf{x}_0, \ldots, \mathbf{x}_{N-1} \in \mathbb{R}^d$: observed time series of a dynamical system comprising of d variables at time $t = 0, \ldots, N-1$

• u_t is a noise term

A B F A B F

イロト イヨト イヨト イヨト

September 12, 2013 10 / 30

Choose h

э

(3)

3

3

A D N A B N A B N A B N

Network inference with linear models

- **(**) $\mathbf{x}_{t+1} = B\mathbf{x}_t + \mathbf{u}_t$: learn *B* with a sparsity constraint
- ② Threshold B to get an estimate of the adjacency matrix A

(B)

Network inference with linear models

- $\mathbf{x}_{t+1} = B\mathbf{x}_t + \mathbf{u}_t$: learn B with a sparsity constraint
- 2 Threshold B to get an estimate of the adjacency matrix A

Network inference with nonlinear models

() Learn a nonlinear model $h : \mathbb{R}^d \to \mathbb{R}^d : \mathbf{x}_{t+1} = h(\mathbf{x}_t) + \mathbf{u}_t$

Network inference with linear models

- **Q** $\mathbf{x}_{t+1} = B\mathbf{x}_t + \mathbf{u}_t$: learn *B* with a sparsity constraint
- **2** Threshold B to get an estimate of the adjacency matrix A

Network inference with nonlinear models

- **()** Learn a nonlinear model $h : \mathbb{R}^d \to \mathbb{R}^d : \mathbf{x}_{t+1} = h(\mathbf{x}_t) + \mathbf{u}_t$
- **2** Compute the average empirical Jacobian matrix of h:

$$J(h)_{ij} = \frac{1}{N-1} \sum_{t=0}^{N-2} \frac{\partial h(\mathbf{x}_t)_i}{\partial (\mathbf{x}_t)_j}$$

3 Threshold J(h) to get an estimate of the adjacency matrix A

Outline

Reverse-engineering GRN

- 2 A new framework for network inference
- 3 A novel nonlinear vector autoregressive model
 - 4 Learning the OKVAR model
 - 5 Numerical studies
 - 6 Conclusion

3

A D N A B N A B N A B N

From single-valued functions ...

- Binary classification
- Real-valued regression

▶ < ∃ >

From single-valued functions

- Binary classification SVM
- Real-valued regression SVR
- kernels : popular nonparametric nonlinear methods

From single-valued functions ...

- Binary classification SVM
- Real-valued regression SVR
- Scalar kernels : popular nonparametric nonlinear methods

... to vector-valued functions

Recent interest in **operator**-valued kernels [Senkene and Tempel'man, 1973; Michelli & Pontil, 2005; Caponnetto *et al.*, 2008]

Development of new learning tasks:

- Multi-task learning [Evgeniou et al., 2005]
- Functional regression [Kadri et al., 2010]
- Structured output prediction [Brouard et al., 2011]

RKHS theory for vector-valued functions

Notations

- Input set : \mathcal{X}
- Output Hilbert space : \mathcal{F}_{v}
- We consider functions $h: \mathcal{X} \to \mathcal{F}_y$

RKHS theory for vector-valued functions

Notations

- Input set : \mathcal{X}
- Output Hilbert space : \mathcal{F}_y
- We consider functions $h: \mathcal{X} \to \mathcal{F}_y$

Operator-valued kernel [Senkene and Tempel'man (1973) , Caponnetto et al (2008)]

 $\mathcal{K}: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{L}(\mathcal{F}_y)$ is an operator-valued kernel if:

•
$$\forall (x,z) \in \mathcal{X} \times \mathcal{X}, \ \ \mathcal{K}(x,z) = \mathcal{K}(z,x)^*$$

•
$$\forall m \in \mathbb{N}, \forall \{(x_i, \mathbf{y}_i)\}_{i=1}^m \subseteq \mathcal{X} \times \mathcal{F}_y, \ \sum_{i,j=1}^m \langle \mathbf{y}_i, \mathcal{K}(x_i, x_j) \mathbf{y}_j \rangle_{\mathcal{F}_y} \geq 0$$

- 3

A B + A B +

Representer theorem [Michelli and Pontil (2005)] Let $\lambda > 0$, $S_n = \{(x_1, \mathbf{y}_1), \dots, (x_n, \mathbf{y}_n)\} \subset \mathbb{R}^d \times \mathbb{R}^d$. Then, the following optimization problem:

$$\underset{h \in \mathcal{H}}{\operatorname{argmin}} \mathcal{L}(h) = \sum_{i=1}^{n} \|h(x_i) - \mathbf{y}_i\|^2 + \lambda \|h\|_{\mathcal{H}}^2$$

admits a solution of the form:

$$\hat{h}(\cdot; \mathcal{S}_n) = \sum_{\ell=1}^n K(x_\ell, \cdot) \mathbf{c}_\ell$$
(2)

where $\mathbf{c}_{\ell} \in \mathbb{R}^d, \ell = \{1, \cdots, n\}$ are to be learned

イロト 不得 トイヨト イヨト 二日

Representer theorem [Michelli and Pontil (2005)] Let $\lambda > 0$, $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{R}^d \times \mathbb{R}^d$. Then, the following optimization problem:

$$\underset{h \in \mathcal{H}}{\operatorname{argmin}} \mathcal{L}(h) = \sum_{i=1}^{n} \|h(x_i) - \mathbf{y}_i\|^2 + \lambda \|h\|_{\mathcal{H}}^2$$

admits a solution of the form:

$$\hat{h}(\cdot; \mathcal{S}_n) = \sum_{\ell=1}^n K(x_\ell, \cdot) \mathbf{c}_\ell$$
(2)

where $\mathbf{c}_{\ell} \in \mathbb{R}^{d}, \ell = \{1, \cdots, n\}$ are to be learned

Operator-valued Kernel-based Vector AutoRegressive (OKVAR) model

Given the observed time series $S_N = \{(\mathbf{x}_0, \mathbf{x}_1), \dots, (\mathbf{x}_{N-2}, \mathbf{x}_{N-1})\} \subset \mathbb{R}^d \times \mathbb{R}^d$, the OKVAR model *h* is defined as

$$h(\mathbf{x}_t; \mathcal{S}_N) = \sum_{\ell=0}^{N-2} \mathcal{K}(\mathbf{x}_\ell, \mathbf{x}_t) \mathbf{c}_\ell$$
(3)

Néhémy Lim (CEA LIST/IBISC)

The OKVAR model family

Examples of matrix-valued kernels

• $K_1(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z})B$ with $k_1(\mathbf{x}, \mathbf{z}) = \exp(-\gamma_1 || \mathbf{x} - \mathbf{z} ||^2)$ and $B \in S_d^+(\mathbb{R})$

②
$$\forall$$
(*p*, *q*) ∈ {1,...,*d*}², *K*₂(**x**, **z**)_{*pq*} = exp($-\gamma_2(x^p - z^q)^2$)

The OKVAR model family

Examples of matrix-valued kernels

• $K_1(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z})B$ with $k_1(\mathbf{x}, \mathbf{z}) = \exp(-\gamma_1 || \mathbf{x} - \mathbf{z} ||^2)$ and $B \in S_d^+(\mathbb{R})$

$$J(h_1)_{ij}(t) = \sum_{\ell=0}^{N-2} \sum_{q=1}^d b_{iq} c_\ell^q \frac{\partial k_1(\mathbf{x}_t, \mathbf{x}_\ell)}{\partial x_t^j}$$

∀(p,q) ∈ {1,...,d}², K₂(**x**, **z**)_{pq} = exp(-
$$\gamma_2(x^p - z^q)^2$$
)

 J(h₂)_{ij}(t) = 2 $\gamma_2(x_t^i - x_t^j) \exp\left(-\gamma_2(x_t^i - x_t^j)^2\right) c_t^j$

The OKVAR model family

Examples of matrix-valued kernels

• $K_1(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z})B$ with $k_1(\mathbf{x}, \mathbf{z}) = \exp(-\gamma_1 || \mathbf{x} - \mathbf{z} ||^2)$ and $B \in S_d^+(\mathbb{R})$

$$J(h_1)_{ij}(t) = \sum_{\ell=0}^{N-2} \sum_{q=1}^d b_{iq} c_\ell^q \frac{\partial k_1(\mathbf{x}_t, \mathbf{x}_\ell)}{\partial x_t^j}$$

Néhémy Lim (CEA LIST/IBISC)

Outline

Reverse-engineering GRN

- 2 A new framework for network inference
- 3 A novel nonlinear vector autoregressive model
- 4 Learning the OKVAR model
 - 5 Numerical studies
 - 6 Conclusion

3

A D N A B N A B N A B N

Learning the OKVAR model

We aim to solve the following optimization problem :

$$\begin{array}{ll} \underset{B \in \mathcal{M}_{d}(\mathbb{R}), C \in \mathcal{M}_{N-1,d}(\mathbb{R})}{\text{minimize}} & \mathcal{L}(B,C) = \sum_{t=0}^{N-2} ||h(\mathbf{x}_{t};B,C) - \mathbf{x}_{t+1}||^{2} + \Omega(B,C) \\ \text{s.t.} & B \in \mathcal{S}_{d}^{+}(\mathbb{R}) \end{array}$$
(4)

with $\Omega(B, C) = \lambda_h ||h_{B,C}||^2_{\mathcal{H}} + \lambda_C ||C||_{\ell_1} + \lambda_B ||B||_{\ell_1}$

3

Learning the OKVAR model

• For fixed B and for \mathbf{c}_{ℓ} the loss function to be minimized becomes:

$$\mathcal{L}(\hat{B}, \mathbf{C}, \ell) = \sum_{t=0}^{N-2} ||h(\mathbf{x}_t; \hat{B}, \mathbf{C}) - \mathbf{x}_{t+1}||^2 + \lambda_h ||h_{\hat{B}, \mathbf{C}}||_{\mathcal{H}}^2 + \lambda_C ||\mathbf{C}||_{\ell_1}$$
(5)

• For given \hat{C} , the loss function to be minimized is the following:

$$\mathcal{L}(B, \hat{C}) = \sum_{t=0}^{N-2} ||h(\mathbf{x}_t; B, \hat{C}) - \mathbf{x}_{t+1}||^2 + \lambda_h ||h_{B,\hat{C}}||_{\mathcal{H}}^2 + \lambda_B ||B||_{\ell_1}$$
(6)

Learning the OKVAR model

• For fixed B and for \mathbf{c}_{ℓ} the loss function to be minimized becomes:

$$\mathcal{L}(\hat{B}, \mathbf{C}, \ell) = \sum_{t=0}^{N-2} ||h(\mathbf{x}_t; \hat{B}, \mathbf{C}) - \mathbf{x}_{t+1}||^2 + \lambda_h ||h_{\hat{B}, \mathbf{C}}||_{\mathcal{H}}^2 + \lambda_C ||\mathbf{C}||_{\ell_1}$$
(5)

- proximal gradient algorithms [Martinet (1970); Beck and Teboulle (2010)]
- For given \hat{C} , the loss function to be minimized is the following:

$$\mathcal{L}(\boldsymbol{B}, \hat{\boldsymbol{C}}) = \sum_{t=0}^{N-2} ||\boldsymbol{h}(\mathbf{x}_t; \boldsymbol{B}, \hat{\boldsymbol{C}}) - \mathbf{x}_{t+1}||^2 + \lambda_h ||\boldsymbol{h}_{\boldsymbol{B}, \hat{\boldsymbol{C}}}||_{\mathcal{H}}^2 + \lambda_B ||\boldsymbol{B}||_{\ell_1}$$
(6)

Matrix exponentiated gradient updates [Tsuda et al (2005)]

Outline

Reverse-engineering GRN

- 2 A new framework for network inference
- 3 A novel nonlinear vector autoregressive model
- 4 Learning the OKVAR model
- 5 Numerical studies
 - 6 Conclusion

4 E

DREAM3 data set

- DREAM = Dialogue for Reverse Engineering Assessments and Methods
- 5 size-10 and 5 size-100 networks (subgraphs of *E. coli* and *S. cerevisiae*) have been generated
 - Ecoli1, Ecoli2, Yeast1, Yeast2, Yeast3
- An example of gene regulatory network : S. cerevisiae subnetwork

 \rightarrow activation

 \rightarrow inhibition

• Challenge : Reconstruct the networks from time-series data of N = 21 points

DREAM3 size-10 data sets : Results

Table 1: AUROC

	Ecoli1	Ecoli2	Yeast1	Yeast2	Yeast3
OKVAR + True B	0.956	0.918	0.806	0.781	0.780
OKVAR	0.717	0.724	0.644	0.740	0.705
LASSO	0.500	0.547	0.528	0.627	0.582
GPODE	0.607	0.516	0.494	0.613	0.571
G1DBN	0.604	0.573	0.494	0.540	0.601
Team 236	0.621	0.650	0.646	0.438	0.488
Team 190	0.573	0.515	0.631	0.577	0.603

Table 2: AUPR

	Ecoli1	Ecoli2	Yeast1	Yeast2	Yeast3
OKVAR + True B	0.752	0.677	0.473	0.523	0.586
OKVAR	0.385	0.678	0.430	0.480	0.447
LASSO	0.119	0.531	0.244	0.305	0.255
GPODE	0.180	0.146	0.089	0.377	0.341
G1DBN	0.159	0.534	0.192	0.226	0.248
Team 236	0.197	0.378	0.194	0.236	0.239
Team 190	0.152	0.181	0.167	0.371	0.373

Néhémy Lim (CEA LIST/IBISC)

3

DREAM3 size-100 data sets : Results

Table 1: AUROC

	Ecoli1	Ecoli2	Yeast1	Yeast2	Yeast3
OKVAR + True B	0.962	0.971	0.958	0.906	0.897
OKVAR	0.618	0.620	0.537	0.553	0.522
LASSO	0.519	0.512	0.507	0.530	0.506
G1DBN	0.553	0.548	0.510	0.509	0.506
Team 236	0.527	0.546	0.532	0.508	0.508

Table 2: AUPR

	Ecoli1	Ecoli2	Yeast1	Yeast2	Yeast3
OKVAR + True B	0.432	0.516	0.279	0.407	0.364
OKVAR	0.029	0.093	0.024	0.052	0.053
LASSO	0.016	0.057	0.016	0.044	0.044
G1DBN	0.018	0.052	0.022	0.043	0.049
Team 236	0.019	0.042	0.035	0.046	0.065

Néhémy Lim (CEA LIST/IBISC)

3

A B b A B b

Outline

Reverse-engineering GRN

- 2 A new framework for network inference
- 3 A novel nonlinear vector autoregressive model
- 4 Learning the OKVAR model
- Numerical studies

• A key problem: GRN inference from multivariate time-series data

- A key problem: GRN inference from multivariate time-series data
- **Requirements:** •
 - Generic
 - Causality
 - Nonlinear
 - Scalable

- A key problem: GRN inference from multivariate time-series data
- **Requirements:** •
 - ► Generic Ø
 - Causality Ø
 - ★ Network inference method via the Jacobian
 - Nonlinear
 - Scalable

- A key problem: GRN inference from multivariate time-series data
- Requirements:
 - ► Generic 🛛 🗹
 - ► Causality Ø
 - * Network inference method via the Jacobian
 - ► Nonlinear Ø
 - * A novel operator-valued kernel based vector autoregressive model
 - Scalable

- A key problem: GRN inference from multivariate time-series data
- Requirements:
 - ► Generic 🛛 🗹
 - ► Causality Ø
 - Network inference method via the Jacobian
 - 🕨 Nonlinear 🗹
 - * A novel operator-valued kernel based vector autoregressive model
 - ▶ Scalable 🛛
- Results:
 - Very good performance of the OKVAR model on simulated benchmark data sets

Perspectives

• Theoretical results:

- Universality of kernels, consistency of the Jacobian estimator [Fouchet]
- Generalization error

< A

Perspectives

• Theoretical results:

- Universality of kernels, consistency of the Jacobian estimator [Fouchet]
- Generalization error

• Probabilistic framework with informative priors

Perspectives

• Theoretical results:

- Universality of kernels, consistency of the Jacobian estimator [Fouchet]
- Generalization error
- Probabilistic framework with informative priors
- Exploit the OKVAR model for prediction

List of recent papers

• N. Lim*, Y. Senbabaoglu*, G. Michailidis, F. d'Alché-Buc

BIOINFORMATICS ORIGINAL PAPER

2013, pages 1–8 doi:10.1093/bioinformatics/btt167

System biology

Advance Access publication April 10, 2013

OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks

 N. Lim*, F. d'Alché-Buc*, C. Auliac, G. Michailidis, Operator-valued Kernel based Vector Autoregressive Models for Network Inference, submitted to *Machine Learning Journal* (under revision)

イロト イポト イヨト イヨト

Thank you for your attention !