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Short overview on network inference with GGM

Framework

Data: large scale gene expression data

individuals
n ' 30/50

X =


. . . . . .

. . X j
i . . .

. . . . . .

︸                              ︷︷                              ︸
variables (genes expression), p'103/4

What we want to obtain: a graph/network with

• nodes: genes;

• edges: strong links between gene expressions.
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Short overview on network inference with GGM

Using partial correlations

correlation is not causality...

strong indirect correlation
y z

x

set.seed(2807); x <- rnorm(100)

y <- 2*x+1+rnorm(100,0,0.1); cor(x,y) [1] 0.998826

z <- 2*x+1+rnorm(100,0,0.1); cor(x,z) [1] 0.998751

cor(y,z) [1] 0.9971105

] Partial correlation

cor(lm(x z)$residuals,lm(y z)$residuals) [1] 0.7801174

cor(lm(x y)$residuals,lm(z y)$residuals) [1] 0.7639094

cor(lm(y x)$residuals,lm(z x)$residuals) [1] -0.1933699
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Short overview on network inference with GGM

Theoretical framework

Gaussian Graphical Models (GGM) [Schäfer and Strimmer, 2005,
Meinshausen and Bühlmann, 2006, Friedman et al., 2008]
gene expressions: X ∼ N(0,Σ)
Sparse approach: partial correlations are estimated by using linear
models and a sparse penalty: ∀ j

X j = βT
j X−j + ε ; arg max

(βjj′ )j′

log MLj − λ
∑
j′,j

|βjj′ |


In the Gaussian framework: βjj′ = −

Sjj′

Sjj
where S = Σ−1 (concentration

matrix) is related to partial correlations by πjj′ = −
Sjj′√
SjjSj′ j′

.
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Inference with multiple samples

Motivation for multiple networks inference

Pan-European project Diogenes1 (with Nathalie Viguerie, INSERM):
gene expressions (lipid tissues) from 204 obese women before and after
a low-calorie diet (LCD).

• Assumption: A
common functioning
exists regardless the
condition;

• Which genes are linked
independently
from/depending on the
condition?

1http://www.diogenes-eu.org/; see also [Viguerie et al., 2012]
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Inference with multiple samples

Naive approach: independent estimations

Notations: p genes measured in k samples, each corresponding to a
specific condition: (Xc

j )j=1,...,p ∼ N(0,Σc), for c = 1, . . . , k .
For c = 1, . . . , k , nc independent observations (Xc

ij )i=1,...,nc and
∑

c nc = n.

Independent inference

Estimation ∀ c = 1, . . . , k and ∀ j = 1, . . . , p,

Xc
j = Xc

\jβ
c
j + εc

j

are estimated (independently) by maximizing pseudo-likelihood:

L(S |X) =
∑

c

∑
j

logP
(
Xc

j |X
c
\j , Sc

j

)
, S concentration matrix
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Inference with multiple samples

Related papers

Problem: previous estimation does not use the fact that the different
networks should be somehow alike!
Previous proposals
• [Chiquet et al., 2011] replace Σc by Σ̃c = 1

2 Σc + 1
2 Σ and add a

sparse penalty;

• [Chiquet et al., 2011] LASSO and Group-LASSO type penalties to
force consistent or sign-coherent edges between conditions;

• [Danaher et al., ] add a sparse penalty and the penalty∑
c,c′ ‖Sc − Sc′‖L1 ;

• [Mohan et al., 2012] add a group-LASSO like penalty∑
c,c′

∑
j ‖Sc

j − Sc′
j ‖L2 that focuses on differences due to a few number

of nodes only.
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Inference with multiple samples

Consensus LASSO
Proposal: Infer multiple networks by forcing them toward a consensual
network: i.e., explicitly constraining the differences between conditions
to be under control but with a L2 penalty to allow for more differences
than with Group-LASSO type penalties.
Original optimization:

max
(βc

jk )k,j,c=1,...,C

∑
c

log MLc
j − λ

∑
k,j

|βc
jk |

 .

Add a constraint to force inference toward a “consensus” βcons

1
2
βT

j Σ̂\j\jβj + βT
j Σ̂j\j + λ‖βj‖L1 + µ

∑
c

wc‖β
c
j − β

cons
j ‖2L2

with:
• wc : real number used to weight the conditions (wc = 1 or wc = 1√

nc
);

• µ regularization parameter;
• βcons

j whatever you want...?
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jk )k,j,c=1,...,C
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c

log MLc
j − λ
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k,j

|βc
jk |

 .
[Ambroise et al., 2009, Chiquet et al., 2011]: is equivalent to minimize p
problems having dimension k(p − 1):

1
2
βT

j Σ̂\j\jβj + βT
j Σ̂j\j + λ‖βj‖L1

with Σ̂\j\j is the block diagonal matrix Diag
(
Σ̂1
\j\j , . . . , Σ̂

k
\j\j

)
and similarly for

Σ̂j\j .
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Inference with multiple samples

Choice of a consensus

βcons
j =

∑
c

nc
n β

c
j is a good choice because:

• the consensual penalty is then quadratic with respect to βj ;

• thus, solving the optimization problem is equivalent to maximizing

1
2
βT

j Sj(µ)βj + βT
j Σ̂j\j + λ

∑
c

1
nc
‖βc

j ‖1

with Sj(µ) = Σ̂j\j + 2µAT A with A a matrix that does not depend on j.

Convex part + L1-norm penalty

similar to standard LASSO problems: use of an “active set” approach as
described in [Osborne et al., 2000, Chiquet et al., 2011]
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Inference with multiple samples

Bootstrap estimation

Bootstrapped Consensus Lasso

1: Require: List of genes: {1, . . . , p}; Gene expressions: X ; Condition
ids: ci ∈ {1, ...,C}

2: Initialize ∀ j, j′ ∈ {1, . . . , p}, Nc(j, j′)← 0; µ fixed
3: for b = 1→ P do
4: Take a bootstrap sample Bb

5: Estimate (βc,b ,λ
j )j,c,λ from the previous method for several λ

(decreasing order)

6: Find
{(∑

j,j′,c Iβc,λ,b
j ,0

)
> T1

}
return (βc,b

j )j,c := (βc,λmax,b
j )j,c

7: if βc,b
j , 0 then

8: Nc(j, j′)← Nc(j, j′) + 1
9: end if

10: end for
11: Select edges with Nc(j, j′) > T2 (T2 chosen)
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Simulations
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Simulations

Simulated data

Expression data with known co-expression network

• original network (scale free) taken from
http://www.comp-sys-bio.org/AGN/data.html (100 nodes,
∼ 200 edges, loops removed);

• rewire a ratio r of the edges to generate k “children” networks
(sharing approximately 100(1 − 2r)% of their edges);

• generate “expression data” with a random Gaussian process from
each chid.
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Simulations

An example with k = 2, r = 5%
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Simulations

Choice for T2
Data: r = 0.05, k = 2 and n1 = n2 = 20
100 bootstrap samples, µ = 1, T1 = 250 or 500

●● 30 selections at least
30 selections at least

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
precision

re
ca

ll

●
●

40 selections at least
43 selections at least

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
precision

re
ca

ll

Dots correspond to best F = 2 × precision×recall
precision+recall

⇒ Best F corresponds to selecting a number of edges approximately
equal to the number of edges of the original network.
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Simulations

Choice for T1 and µ
µ T1 % of improvement

0.1/1 {250, 300, 500} of bootstrapping
network sizes rewired edges: 5%
20-20 1 500 30.69
20-30 0.1 500 11.87
30-30 1 300 20.15
50-50 1 300 14.36
20-20-20-20-20 1 500 86.04
30-30-30-30 0.1 500 42.67
network sizes rewired edges: 20%
20-20 0.1 300 -17.86
20-30 0.1 300 -18.35
30-30 1 500 -7.97
50-50 0.1 300 -7.83
20-20-20-20-20 0.1 500 10.27
30-30-30-30 1 500 13.48
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Simulations

Comparisons (best/worst case F for different parameters)
Method gLasso cLasso gLasso+boot cLasso+boot
nc rewired edges: 5%
20-20 0.19 0.22 (0.18) 0.27 (0.26) 0.29 (0.27)
20-30 0.26 0.30 (0.26) 0.31 (0.29) 0.33 (0.32)
30-30 0.28 0.31 (0.27) 0.35 (0.31) 0.38 (0.36)
50-50 0.36 0.43 (0.36) 0.47 (0.46) 0.49 (0.49)
20-20-20-20-20 0.19 0.23 (0.18) 0.39 (0.38) 0.43 (0.40)
30-30-30-30 0.30 0.36 (0.29) 0.49 (0.48) 0.51 (0.50)
nc rewired edges: 20%
20-20 0.21 0.23 (0.19) 0.18 (0.17) 0.19 (0.17)
20-30 0.26 0.26 (0.25) 0.20 (0.19) 0.22 (0.20)
30-30 0.28 0.31 (0.29) 0.27 (0.27) 0.29 (0.28)
50-50 0.42 0.43 (0.41) 0.38 (0.37) 0.40 (0.38)
20-20-20-20-20 0.20 0.22 (0.20) 0.22 (0.20) 0.24 (0.24)
30-30-30-30 0.27 0.29 (0.27) 0.30 (0.30) 0.33 (0.31)

Not shown here but when the % of rewired edges is larger (20%),
intertwinned Lasso has better performances (they are not improved by
bootstrapping).
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Simulations

Real data
204 obese women ; expression of 221 genes before and after a LCD
µ = 1 ; T1 = 1000 (target density: 4%)

Distribution of the number of times an edge is selected over 100
bootstrap samples

0

500

1000

1500

0 25 50 75 100
Counts

F
re

qu
en

cy

(70% of the pairs of nodes are never selected)⇒ T2 = 80
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Simulations

Networks

Before diet
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densities about 1.3% - some interactions (both shared and specific) make
sense for the biologist
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Simulations

Thank you for your attention...

Programs available in the R package therese (on R-Forge). Joint work
with

Magali SanCristobal Matthieu Vignes
(LGC, INRA de Toulouse) (MIAT, INRA de Toulouse)

Nathalie Viguerie
(I2MC, INSERM Toulouse)
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Simulations
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