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Introduction GRN

Gene regulatory networks (GRN)

Groups of coordinated genes that interact indirectly with one another
through transcription factors
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Introduction GRN

Observational vs. intervention expression data

Observational data
Wild-type or steady-state expression over multiple biological replicates (or
time points), easy and less expensive to obtain

Intervention data
Observe the expression levels of every gene in the network in the presence
of one or multiple perturbations:

Genetic (e.g., knock-out or knock-down experiments)
Biological (e.g., alter growth media or temperature)

⇒ Generate information about (indirect or direct) causal relationships, ...
but can be $$$ and labor-intensive

andrea.rau@jouy.inra.fr Joint estimation of causal effects NETBIO 3 / 31



Introduction GRN

Markov equivalence in DAGs

Markov equivalence: two different network structures can yield the
same joint distribution and observational data alone generally cannot
orient edges
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Introduction Causal effects

Effect of an intervention on a DAG

Following an intervention do(Xi = xi), consider the expected value of each
gene via do-calculus (Pearl, 2000):

E(Xj |do(Xi = x)) =
{
E(Xj) if Xj ∈ pa(Xi)∫
E(Xj |x , pa(Xi))P(pa(Xi))dpa(Xi) if Xj /∈ pa(Xi)

Note: P(Xj |do(Xi = x)) 6= P(Xj |Xi = x)
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Introduction Causal effects

Causal effects

Definition: Total causal effects

βij =
∂

∂x E(Xj |do(Xi = x))

Equal to 0 if Xi is not an ancestor of Xj

Definition: Direct causal effects (graph edges)

αij =
∂

∂x E(Xj |pa(Xi), do(Xi = x))

Equal to 0 if Xi is not a parent of Xj
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Introduction State of the art

Estimating causal effects from observational data

Some causal information can be recovered from observational data alone...

Intervention-calculus when the DAG is Absent (Maathuis et al., 2009)
1 Estimate the equivalence class of the DAG via the PC-algorithm

(Kalisch and Bühlmann, 2007)
2 Use intervention calculus to estimate bounds for causal effects across

equivalence classes, and rank causal effects

Shown to be better able to predict strong causal effects using
observational data alone (Maathuis al., 2010) than Lasso and
elastic-net
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Introduction State of the art

Estimating causal effects from intervention data

Idea: if gene X1 is regulated by gene X2, its expression level after
knock-out of X2 should differ considerably compared to its wild type
(steady-state) expression

Pinna et al. (2010):
Data: one wild-type (Xwt

j for gene j), and one knock-out experiment
for each gene (X i

j for gene j under knock-out of gene i)
Four different deviation matrices calculated, feed-forward edges
down-ranked, and causal links ranked in order of absolute value

Note: winner of the DREAM4 100-gene challenge
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Introduction State of the art

Some motivating questions...

Can more complicated intervention designs (partial knock-outs,
multiple knock-outs) be jointly modeled with observational data to
estimate causal effects?
Does the inclusion of multiple intervention data improve inference of
causal effects?
Can the information provided by a given gene knock-out experiment
be quantified?
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Joint estimation of causal effects

Notation

X k
j is the expression of gene j ∈ 1, . . . , p in experiment k ∈ 1, . . . ,N

Gaussian Bayesian network (GBN):

X k
j = mj +

∑
i∈pa(j)

wijX k
i + εj with εj ∼ N (0, σ2

j )

wij 6= 0 if and only if i ∈ pa(j)
Directed acyclic graph (DAG), and nodes have been ordered so that
i ∈ pa(j)⇒ i < j (i.e., W = (wij) is upper triangular)
Model parameters are θ = (W,m,σ)

Total causal effects are L = (I−W)−1 = I + W + . . .+ Wp−1

Direct causal effects are W
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Joint estimation of causal effects Likelihood and parameter estimation

Joint log-likelihood: Observational data only

We can show that this model is equivalent to X ∼ N (µ,Σ) with

µ = mL and Σ = LT diag(σ2)L =
∑
j∈I

σ2
j LT eT

j ejL

where ej is a p-dimensional null row-vector except for its jth term

The log-likelihood of the model can be written as:

`(m,σ,W) = Cst−
∑

j
Nj log(σj)−

1
2

∑
k

∑
j

1
σ2

j
(xk

j − xkWeT
j −mj)

2
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Joint estimation of causal effects Likelihood and parameter estimation

Joint log-likelihood: Observational + intervention data (1)

Consider experiment k with intervention on Jk (Jk = ∅ means no
intervention), where Kj = {k, j /∈ Jk} and Nj = |Kj |.

The log-likelihood of the model can now be written as:

`(m,σ,W) = Cst−
∑

j
Nj log(σj)−

1
2

∑
k

∑
j /∈Jk

1
σ2

j
(xk

j − xkWeT
j −mj)

2

Then
mj =

1
Nj

∑
k∈Kj

(xk
j − xkWeT

j )
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Joint estimation of causal effects Likelihood and parameter estimation

Joint log-likelihood: Observational + intervention data (2)
Consider experiment k with intervention on Jk (Jk = ∅ means no
intervention), where Kj = {k, j /∈ Jk} and Nj = |Kj |.

The log-likelihood of the model can then be rewritten as:

`(σ,W) = Cst−
∑

j
Nj log(σj)−

1
2

∑
k

∑
j /∈Jk

1
σ2

j
(yk,j

j − yk,jWeT
j )

2

where for (k, j) such that j /∈ Jk : yk,j = xk − 1/Nj
∑

k′∈Kj xk′

Then W can be estimated by solving the following linear system:∑
i ′,(i ′,j)∈E

wi ′,j
∑

k∈Kj

yk,j
i yk,j

i ′ =
∑

k∈Kj

yk,j
i yk,j

j for all (i , j) ∈ E

and
σ2

j =
1
Nj

∑
k∈Kj

(yk,j
j − yk,jWeT

j )
2
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Joint estimation of causal effects Node ordering

Identifying an appropriate causal node ordering in the
graph

Some possibilities:
1 Deterministic quick-sort algorithm to determine optimal node ordering

2 Explore the posterior distribution of the causal node order and
estimated causal effects via an empirical Metropolis-Hastings
algorithm

Node ordering proposal via Mallows model, using node ordering of
previous iteration as reference
Full estimation of model parameters for a given node ordering using
likelihood calculations
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Joint estimation of causal effects Node ordering

Mallows model (Mallows 1957)

Let R be a modal or reference ordering, φ ∈ (0, 1] a temperature
parameter, and r = r1r2 . . . rm be a node ordering:

P(r) = P(r |R, φ) = 1
Z φ

d(R,r)

where Z is a normalizing constant and

d(R, r) =
∑
i<j

1 [rj � ri ]

is a dissimilarity measure using the number of pairwise disagreements

φ = 1 corresponds to a dirac on R, φ = 0 corresponds to a uniform
distribution over all node orderings
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Results Simulations

Simulation study: Description

Simulated data following a GBN (p = 10
genes):

Non-zero wij ∈ (−1,−.25) ∪ (.25, 1)
mj = 0.5 and σj = {0.01, 0.1, 0.5} ∀ j

Five settings considered:
1 Observational only
2 Systematic single knock-outs
3 Partial single knock-outs
4 Multiple knock-outs
5 Multiple knock-outs and 3 hidden

genes

N6 N9N1

N4 N7

N10

N8 N5

N2

N3

Trial run to select φ such that acceptance rate is ≈ 30-40%.
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Results Simulations

Simulation setting 1: Observational only

20 observational (wild-type) replicates with no interventions

Table : Area under the ROC curve (AUROC), area under the precision-recall curve (AUPRC),
Spearman correlation with true total causal effects, and mean squared error (MSE) of estimated
total causal effects, averaged over 100 datasets (sd).

Criterion MCMC-Mallows1 Pinna IDA (opt) IDA (pes)
AUROC 0.749 (0.043) — 0.76 (0.062) 0.643 (0.079)
AUPRC 0.638 (0.053) — 0.628 (0.078) 0.527 (0.088)

Spearman 0.48 (0.091) — 0.491 (0.128) 0.254 (0.177)
MSE 0.056 (0.007) — 0.182 (0.054) 0.126 (0.034)

1 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Simulation setting 2: Systematic single KO

10 wild-types and one knock-out per gene

Table : Area under the ROC curve (AUROC), area under the precision-recall curve (AUPRC),
Spearman correlation with true total causal effects, and mean squared error (MSE) of estimated
total causal effects, averaged over 100 datasets (sd).

Criterion MCMC-Mallows1 Pinna IDA (opt) IDA (pes)
AUROC 0.948 (0.03) 0.825 (0.048) 0.733 (0.068) 0.67 (0.073)
AUPRC 0.868 (0.042) 0.737 (0.059) 0.569 (0.087) 0.53 (0.091)

Spearman 0.696 (0.053) 0.553 (0.097) 0.42 (0.14) 0.318 (0.186)
MSE 0.026 (0.012) 0.104 (0.011) 0.334 (0.137) 0.196 (0.067)

1 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Simulation setting 3: Partial single KO

15 wild-types and one knock-out for five genes {N1, N4, N6, N7, N9}

Table : Area under the ROC curve (AUROC), area under the precision-recall curve (AUPRC),
Spearman correlation with true total causal effects, and mean squared error (MSE) of estimated
total causal effects, averaged over 100 datasets (sd).

Criterion MCMC-Mallows1 Pinna IDA (opt) IDA (pes)
AUROC 0.845 (0.059) 0.795 (0.017) 0.736 (0.056) 0.646 (0.085)
AUPRC 0.734 (0.078) 0.725 (0.038) 0.588 (0.075) 0.514 (0.092)

Spearman 0.587 (0.104) 0.636 (0.034) 0.449 (0.099) 0.285 (0.187)
MSE 0.035 (0.015) 0.081 (0.008) 0.215 (0.066) 0.146 (0.049)

1 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Simulation setting 4: Multiple KO

10 wild types, one knock-out per gene and five double knock-outs:
{N1, N5}, {N1, N6}, {N4, N7}, {N6, N9}, and {N7, N10}

Table : Area under the ROC curve (AUROC), area under the precision-recall curve (AUPRC),
Spearman correlation with true total causal effects, and mean squared error (MSE) of estimated
total causal effects, averaged over 100 datasets (sd).

Criterion MCMC-Mallows1 Pinna IDA (opt) IDA (pes)
AUROC 0.959 (0.016) 0.83 (0.035) 0.733 (0.068) 0.67 (0.073)
AUPRC 0.886 (0.028) 0.725 (0.039) 0.569 (0.087) 0.53 (0.091)

Spearman 0.712 (0.028) 0.625 (0.058) 0.42 (0.14) 0.318 (0.186)
MSE 0.015 (0.006) 0.107 (0.008) 0.334 (0.137) 0.196 (0.067)

1 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Simulation setting 5: Multiple KO and 3 hidden genes

10 wild types, one knock-out per gene, five double knock-outs:
{N1, N5}, {N1, N6}, {N4, N7}, {N6, N9}, and {N7, N10}

and 3 randomly chosen hidden genes

Table : Area under the ROC curve (AUROC), area under the precision-recall curve (AUPRC),
Spearman correlation with true total causal effects, and mean squared error (MSE) of estimated
total causal effects, averaged over 100 datasets (sd).

Criterion MCMC-Mallows1 Pinna IDA (opt) IDA (pes)
AUROC 0.932 (0.046) 0.574 (0.165) 0.58 (0.145) 0.562 (0.121)
AUPRC 0.539 (0.078) 0.36 (0.105) 0.353 (0.086) 0.35 (0.08)

Spearman 0.67 (0.109) 0.037 (0.372) 0.076 (0.316) 0.076 (0.31)
MSE 0.044 (0.034) 0.15 (0.041) 0.45 (0.225) 0.294 (0.124)

1 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Posterior distribution of node ordering: Systematic single
KO
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Results Simulations

Posterior distribution of node ordering: Partial single KO
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Results Simulations

Posterior distribution of node ordering: Observational only

N3

N2

N5

N8

N10

N7

N4

N1

N9

N6

1 2 3 4 5 6 7 8 9 10
Estimated

N
od

e

0.0990

0.0995

0.1000

0.1005

0.1010
value

andrea.rau@jouy.inra.fr Joint estimation of causal effects NETBIO 24 / 31



Results Simulations

Posterior distribution of node ordering: Multiple KO
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Results DREAM4 challenge

DREAM4 challenge

DREAM challenge: international competition held yearly to contribute to
the development of powerful inference methods (Stolovitzky et al., 2007)

DREAM4 in silico network challenge:
Goal: Infer directed GRNs from simulated data (p = 10, p = 100) and
provide a level of confidence for the presence of each possible edge
Data: simulated wild-type, knock-outs, knockdowns, multifactorial
perturbations, and time series expression data (stochastic differential
equations + measurement noise)
Pinna et al. method was top performer for 100-gene networks
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Results DREAM4 challenge

DREAM4 challenge data example
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Results DREAM4 challenge

DREAM4 data: Partial knock-out setting

For each of the five DREAM4 datasets, remove half of the knock-outs
(chosen at random)

Compare GBN-Mallows total causal effect posterior means to Pinna and
IDA

GBN-Mallowsa: wild-type, knock-out, & multifactorial perturbation
data
IDA: wild-type and multifactorial perturbation data
Pinna: wild-type and knock-out data

a50k iterations run, with burn-in of 5k and thinning every 50 iterations.

Trial run to select φ such that acceptance rate is ≈ 30-40%.
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Results DREAM4 challenge

DREAM4 data: Partial knock-out setting
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Discussion

Discussion

GBN model for an arbitrary mixture of observational and knock-out (and
multiple or partial knock-out!) data to enable calculation of causal effects:

MCMC algorithm to explore posterior distribution of node ordering
via Mallows proposal model
Results suggest the benefit in jointly analyzing steady-state and (even
incomplete) intervention data, as well as including multiple
interventions

Future work
Extension to larger-scale networks: MCMC with parallel tempering
and sparsity constraints (ridge or Lasso) for W
Experimental design to plan future (multiple) knock-out
experiments...
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