Inférence de Réseaux bayésiens dynamiques à structure variant "progressivement" dans le temps

Etude de différents modes de partage d'information entre les segments successifs

Frank Dondelinger¹, S. Lèbre², Dirk Husmeier³

¹Biomathematics and Statistics Scotland, University of Edinburgh ²LSIIT Equipe BFO, CNRS UMR 7005, Université de Strasbourg, ³ School of Mathematics and Statistics, University of Glasgow

- Modelling regulatory networks from gene expression time series with DBN
- ARTIVA: Auto Regressive TIme VArying network
- Gradually time varying structure: segment information coupling
- Simulation study
- 8 Real data analysis

Recovering genes functions?

- up/down regulation
- retroaction, feedforwards loops...

\Rightarrow Complex dynamic system

• Objective: identifying this organisation in large scale.

Temporal gene expression data

• Microarrays:

→ simultaneous expression of several thousands of genes.

• Notations: we consider the stochastic process,

$$X = \{X_t^i; \forall i \in \{1, ..., p\}, \forall t \in \{1, ..., n\}\}$$

where X_t^i is the expression of gene *i* at time *t*,

What information extracting from expression profiles?

• Identifying coexpressed genes

 \rightsquigarrow coregulated genes? $\quad \rightsquigarrow$ same biological process?

• 2 main objectives:

- Which genes work together?
- At what time of the process?

DBN modelling of biological motifs

• A biological motif

• Dynamic Bayesian Networks (DBNs) ~ allow to model biological cycles

(Friedman et al. 1998, Murphy and Mian 1999)

DBN modelling

Assumptions

- (A_1) 1st order Markov process
- (A_2) 'simultaneous independence' given the past,

$$\forall t > 1, \forall i, j \in \mathbb{N}, \quad X_t^i \perp X_t^j \mid X_{t-1}.$$

• (A_3) time homogeneity

DAG $\tilde{\mathcal{G}}$ for a first order AR process

• AR(1) process: $\forall t \geq 1$, $X_t = AX_{t-1} + B + \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, \Sigma)$

Proposition

If
$$\Sigma = Var(\varepsilon_t)$$
 is diagonal then $\tilde{\mathcal{G}}_A := \{X_{t-1}^j o X_t^i\} \Leftrightarrow a_{ij} \neq 0.$

DBN for a 1^{st} order auto-regressive process: AR(1).

• AR(1) process:
$$\forall t \geq 1, \ X_t = AX_{t-1} + B + \varepsilon_t, \ \ \varepsilon_t \sim \mathcal{N}(0, \Sigma)$$

Example:

$$\begin{array}{c} G^{1} \\ G^{2} \\ G^{2} \\ G^{3} \\$$

- MCMC, The Bayes Net Toolbox for MATLAB, Murphy (2001).
- Lasso, High-dimensional graphs and variable selection with the Lasso, Meinshausen and Bühlman (2006).
- Shrinkage, Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process, OpgenRhein and Strimmer (2007).
- **G1DBN**, Inferring dynamic genetic networks with low order independencies, Lèbre (2009).
- **SIMoNe**: *Statistical Inference for MOdular NEtworks*, Chiquet et al. (2009).

$\rightsquigarrow \mathsf{Time-homogeneous} \ \mathsf{DBNs}$

 \rightsquigarrow Remove (A_3) time homogeneity ?

Time-varying dynamic Bayesian network model

• Introducing changepoints where the network topology changes.

4 B 6 4 B 6

3

• Undirected networks: Yoshida et al. (2005), Talih and Hengarten (2005), Xuan and Murphy (2007), Ahmed and Xing (2009).

• Directed networks:

• First attempts ;

 \rightsquigarrow Fujita et al. (2007): wavelet, fixed network structure

- \rightsquigarrow Rao et al. (2007): CP/edges estimated separately
- Most recent

→ Ahmed and Xing (2010): non-bayesian (parameter tuning, BIC, ...)

- → Robinson and Hartemink (2009, 2010): discrete network
- → Grzegorczyk and Husmeier (2009, 2011): fixed network structure

- Modelling regulatory networks from gene expression time series with DBN
- ARTIVA: Auto Regressive TIme VArying network
- Gradually time varying structure: segment information coupling
- Simulation study
- 8 Real data analysis

 Auto Regressive TIme VArying (ARTIVA) network model Joint work with Gaëlle Lelandais, Frédéric Devaux, Jennifer Becq and Michael Stumpf
 BMC Systems Biology (2010)

- Our aims:
 - \rightsquigarrow Recover changepoints and edges simultaneously
 - \rightsquigarrow Gene specific segment transition
 - → Continuous data

ARTIVA network model definition.

p genes - n time points - k changepoint positions

For each gene i, $(1 \le i \le p)$,

• a changepoint vector

 $\boldsymbol{\xi}_{i} = (\xi_{i}^{1}, ..., \xi_{i}^{h-1}, \xi_{i}^{h}, ..., \xi_{i}^{K^{i}+1}) \subseteq \{2, ..., n+1\}$

- in each segment h, (for all $\xi_i^h \leq t < \xi_i^{h+1}$),
 - a set of s_i^h parents $G_i^h = \{j_1, ..., j_{s_i^h}\} \subseteq \{1, ..., p\}$
 - and a set of parameters $((w_{ij}^h)_{j \in \{0,...,p\}}, \sigma_i^h)$,

define the regression model,

$$X_i(t) = w_{i0}^h + \sum_{j \in G_i^h} w_{ij}^h X_j(t-1) + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma_i^h).$$

- \rightarrow number of segments K_i ?
- \rightarrow number of edges s_i^h in each segment?

unknown dimension...

Priors

- Multiple changepoint model:
 - Number of changepoints $K_i \sim \mathcal{P}(\lambda)$
 - Changepoints vector $\xi_i | K_i \sim Uniform$
- Network model: (Andrieu and Doucet 1999)
 - Number of parents
 - Set of parents
 - Nois

• Noise variance
$$(\sigma_i^n)^2 \sim \text{Inverse Gamma}$$

• Regression coefficients $w_i^h | G_i^h, \sigma_i^h \sim \mathcal{N}\left(0, (\sigma_i^h)^2 \Sigma_{\mathcal{G}_i^h}\right)$
where $\Sigma_{\mathcal{G}_i^h} = \delta^{-2} D_{\mathcal{G}_i^h}^{\dagger}(x) D_{\mathcal{G}_i^h}(x)$ and $D_{\mathcal{G}_i^h}(x)$ has size $(\xi_i^h - \xi_i^{h-1}) \times (s_i^h + 1)$

-

Hyperparameters:

- $\lambda, \Lambda \sim \mathcal{G}a(0.5, 1) \rightsquigarrow$ expected number of CP/edges
- $\delta^2 \sim \mathcal{IG}(2, 0.2) \rightsquigarrow$ expected signal-to-noise ratio

• From the AR model definition

$$P(x_i^h|G_i^h, a_i^h, \sigma_i^h) = \left(\sqrt{2\pi}\sigma_i^h\right)^{-\operatorname{length}(x_i^h)} \exp\left(-\frac{(x_i^h - D_{G_i^h}a_{G_i^h})^{\dagger} (x_i^h - D_{G_i^h}a_{G_i^h})}{2(\sigma_i^h)^2}\right)$$

Attractive feature (Andrieu and Doucet 1999): integration over parameters w and σ
 → analytical expression of P(k, ξ, G, λ, Λ, δ²|x)

Time-varying DBN inference with reversible jump MCMC

• Outline of the ARTIVA procedure:

→ Reversible jump MCMC (Green, 1995).
 → Model selection adapted from Andrieu and Doucet (1999).

Time-varying DBN inference with reversible jump MCMC

• 4 moves : Birth (b_k) , Death (d_k) , Position shift (u_k) , Regression model update (v_k) .

$$b_k + d_k + u_k + v_k = 1$$

Moves probability

$$b_k = c \min\left\{1, \frac{P_{\overline{k}}(k+1)}{P_{\overline{k}}(k)}\right\}, \ d_k = c \min\left\{1, \frac{P_{\overline{k}}(k-1)}{P_{\overline{k}}(k)}\right\}, \ u_k = \frac{1}{2}(b_k + d_k).$$

 \rightsquigarrow keep *c* small (less CP moves)

- Birth/death move
 - Acceptance ratio

 $R(\xi^+|\xi) = (Likelihood ratio) \times (Prior ratio) \times (Proposal ratio) \times (Jacobian)$

- (Likelihood ratio) ⊥ w, σ (Andrieu and Doucet, 1999)
 → Acceptance ratio based on the network structure only
- Acceptance probability $A(\xi^+|\xi) = \min\{1, R(\xi^+|\xi)\}$

~> Ensures reversibility

• Shift move: standard Metropolis-Hastings step

 $R(\tilde{\xi}|\xi) = (\text{Likelihood ratio}) \times (\text{Proposal ratio})$

4 E 6 4 E 6

(Prior ratio =1)

Edge birth/death move

• Moves probabilities : birth $(b_{s_i^h})$, death $(d_{s_i^h})$, Parameter update (u)with $b_{s_i^h} + d_{s_i^h} + u = 1$

$$b_{s_i^h} = c_{s_i^h} \min\left\{1, \frac{P_{\overline{s}}(s_i^h+1)}{P_{\overline{s}}(s_i^h)}\right\}, \ d_{s_i^h} = c_{s_i^h} \min\left\{1, \frac{P_{\overline{s}}(s_i^h-1)}{P_{\overline{s}}(s_i^h)}\right\}$$

Acceptance ratio

$$R(\tilde{G}_i^h|G_i^h) = \text{(Likelihood ratio)} = \frac{P(x_i^h|\tilde{G}_i^h, \delta^2)}{P(x_i^h|G_i^h, \delta^2)}$$

as:

- Prior ratio \times Proposal ratio=1
- Jacobian=1

ARTIVA network inference with reversible jump MCMC

- Reversible jump MCMC procedure
 Generation of an ergodic Markov chain.
 - → Reversible Markov chain: detailed balance satisfied.
 - ~> Equilibrium distribution converges to the desired post-distribution,

 $P(k,\xi,s,G,w,\sigma|x).$

- R package ARTIVA freely available (http://cran.r-project.org)
- Simulation study + real data analysis in : "Statistical inference of the time-varying structure of gene-regulation networks" Lèbre S, Becq J, Devaux F, Lelandais G, Stumpf M. BMC Systems Biology 4(130) 2010

- Modelling regulatory networks from gene expression time series with DBN
- ARTIVA: Auto Regressive TIme VArying network
- Gradually time varying structure: segment information coupling
- Simulation study
- 8 Real data analysis

Improvement : information coupling between segments

- Assumptions: independence of the different segments
 - risk of over flexibility
 - not realistic in many cases
- \bullet Introducing information coupling between segments \Rightarrow Various approaches
 - Inter-segment information coupling: Hierachical Bayesian model
 - Inter-node information: Hard coupling or Soft coupling
 - Prior distribution ?
 - Exponential distribution $\mathcal{E}xp(\beta)$
 - $\rightsquigarrow 1$ parameter
 - Binomial distribution $\mathcal{B}(a, b)$
 - \rightsquigarrow 2 parameters: 1 for edges similarity, 1 for non-edge similarity

4 B 6 4 B 6

Hierachical Bayesian model for inter-segment information coupling

- Strength of the segment coupling: hyperprior Θ
- Level-2, level-3 hyperparameters: Ψ , Ω
- 2 schemes:

Hard coupling

Hard information coupling based on an exponential prior

 Prior modification (Werlhi and Husmeier, 2008) For all h ≥ 2,

$$P(G_i^h|G_i^{h-1},\beta) = \frac{e^{-\beta |G_i^h - G_i^{h-1}|}}{Z(\beta, G_i^{h-1})}$$

where

- β defines the strength of the coupling between G_i^h and G_i^{h-1}
- |.| the Hamming distance
- $Z(\beta, G_i^{h-1}) = \sum_{G_i^h \in \mathbb{G}} e^{-\beta \left|G_i^h G_i^{h-1}\right|}$ is a normalizing constant also known as the partition function
- When ignoring fan-in restriction (\overline{s}): $Z(\beta, G_i^{h-1}) = Z(\beta) = (1 + e^{-\beta})^p$

$$\Rightarrow P(G_i^h|G_i^{h-1},\beta) = \frac{e^{-\beta \left|G_i^h - G_i^{h-1}\right|}}{(1+e^{-\beta})^p}$$

Easy to integrate to ARTIVA (Lebre et al. 2010)

• Changepoint birth/death acceptance ratio ($G_i = \{G_i^h\}_{1 \le h \le K_i}$)

$$\mathbb{R}(\tilde{\xi}|\xi) = (\text{Likelihood ratio}) \times \frac{P(\tilde{G}_i)}{P(G_i)} \times (\text{Proposal ratio})$$

- Changepoint shift acceptance ratio : unchanged
- Edge birth/death ratio :

$$R(\tilde{G}_{i}^{h}|G_{i}^{h}) = \frac{P(x_{i}^{h}|\tilde{G}_{i}^{h})}{P(x_{i}^{h}|G_{i}^{h})} \times \frac{P(G_{i}^{h+1}|\tilde{G}_{i}^{h},\beta)P(\tilde{G}_{i}^{h}|G_{i}^{h-1},\beta)}{P(G_{i}^{h+1}|G_{i}^{h},\beta)P(G_{i}^{h}|G_{i}^{h-1},\beta)} \times \frac{Q(G_{i}^{h}|\tilde{G}_{i}^{h})}{Q(\tilde{G}_{i}^{h}|G_{i}^{h})}$$

- Parameter update : unchanged
- Additional MCMC step : sampling hyperparameter β
 With symmetric proposal probability,

$$R(\tilde{\beta}|\beta) = \frac{P(\tilde{\beta})}{P(\beta)} \prod_{i=1}^{p} \prod_{h=2}^{K_i} \frac{P(G_i^h|G_i^{h-1}, \tilde{\beta})}{P(G_i^h|G_i^{h-1}, \beta)}$$

 $P(eta) \sim \mathcal{U}[0,20]$ in our study.

Soft information coupling: $\beta \rightarrow \beta_i$

• For each node *i*,

$$P(G_{i}^{h}|G_{i}^{h-1},\beta_{i}) = \frac{e^{-\beta_{i}|G_{i}^{h}-G_{i}^{h-1}|}}{(1+e^{-\beta_{i}})^{p}}$$

• Common gamma prior $\mathcal{G}a(\kappa,\rho)$

$$P(\beta_i) = P(\beta_i | \kappa, \rho) = \beta_i^{\kappa-1} \frac{e^{-\beta_i/\rho}}{\rho^{\kappa} \Gamma(\kappa)}$$

We set

• $\rho = 0.1$ (mean $\mu = \kappa \rho$, variance $\sigma^2 = \kappa \rho^2$) • vague exponential prior on κ : $P(\kappa | \lambda_{\kappa}) = \lambda_{\kappa} e^{-\kappa/\lambda_{\kappa}}$ with $\lambda_{\kappa} = 10$ (prior ignorance) \rightsquigarrow coupling strength between node defined by the coefficient of variation $\frac{\sigma}{\mu} = \frac{1}{\sqrt{\kappa}}$ (small coefficient \rightarrow strong coupling)

Easy to integrate to ARTIVA (Lebre et al. 2010)

• Edge birth/death ratio :

$$R(\tilde{G_{i}^{h}}|G_{i}^{h}) = \frac{P(x_{i}^{h}|\tilde{G_{i}^{h}})}{P(x_{i}^{h}|G_{i}^{h})} \times \frac{P(G_{i}^{h+1}|\tilde{G_{i}^{h}},\beta_{i})P(\tilde{G_{i}^{h}}|G_{i}^{h-1},\beta_{i})}{P(G_{i}^{h+1}|G_{i}^{h},\beta_{i})P(G_{i}^{h}|G_{i}^{h-1},\beta_{i})} \times \frac{Q(G_{i}^{h}|\tilde{G_{i}^{h}})}{Q(\tilde{G_{i}^{h}}|G_{i}^{h})}$$

• Sampling hyperparameter β_i

$$R(\tilde{\beta}_i|\beta_i) = \frac{P(\tilde{\beta}_i)}{P(\beta_i)} \prod_{h=2}^{K_i} \frac{P(G_i^h|G_i^{h-1}, \tilde{\beta}_i)}{P(G_i^h|G_i^{h-1}, \beta_i)}$$

 Additional MCMC step: sampling κ With symmetric proposal probability,

$$R(\tilde{\kappa}|\kappa,\rho) = \frac{e^{-\tilde{\kappa}/\lambda_{\kappa}}}{e^{-\kappa/\lambda_{\kappa}}} \frac{P(\beta_i|\tilde{\kappa},\rho)}{P(\beta_i|\kappa,\rho)}$$

Binomial prior

$$P(G_i^h|G_i^{h-1},a,b) = a^{N_1^1[h,i]}(1-a)^{N_1^0[h,i]}b^{N_0^0[h,i]}(1-b)^{N_0^1[h,i]}$$

- N₁¹[h, i] is the number of edges in G_i^{h-1} matched by an edge in G_i^h
 N₁⁰[h, i] is the number of edges in G_i^{h-1} not matched by an edge in G_i^h
- $N_0^1[h, i]$ is the number of edges in G_i^h not matched by an edge in G_i^{h-1}
- $N_0^0[h, i]$ is the number of coinciding non edges in G_i^{h-1} and G_i^h
- Hyperparameter *a*, *b* prior :

$$P(a,b|lpha,\overline{lpha},\gamma,\overline{\gamma}) \propto a^{lpha-1}(1-a)^{\overline{lpha}-1}b^{\gamma}(1-b)^{\overline{\gamma}-1}$$

- Modelling regulatory networks from gene expression time series with DBN
- ARTIVA: Auto Regressive TIme VArying network
- Gradually time varying structure: segment information coupling
- Simulation study
- 8 Real data analysis

First evalution : topology inference performance

- \Rightarrow Changepoint fixed at their true value
- \Rightarrow No structure change (only edges weights)
 - 10 networks of 10 nodes
 - number of parents : Poisson with mean $\lambda_{parent} = 3$
 - 4 segments of length 15
 - weights $w_{ij} \sim \mathcal{N}(0,1)$
 - noise $\varepsilon_i(t) \sim \mathcal{N}(0,1)$

First evaluation: no structure change

→ performance deteriorates with larger values of the hyperparameter
 → poor MCMC mixing and convergence...

Conclusion: large coupling strength affects the mixing of the Markov chain

Alternative MCMC scheme : multi-segments moves

- Remark: CP moves unchanged
- Target-node specific
- 2 steps (for target node *i*)
 - Sample one possible parent (j) for node i
 - **②** For each segment *h* of the K_i segments, flip the edge status between parent node and target-node *i* with probability q ($q = \frac{1}{2}$)
- Acceptance ratio (with $G_i = \{G_i^h\}_{1 \le h \le K_i}$)

$$R(\tilde{G}_i|G_i) = R_{Likelihood}(\tilde{G}_i|G_i) R_{prior}(\tilde{G}_i|G_i) R_{Proposal}(\tilde{G}_i|G_i)$$

•
$$R_{Likelihood}(\tilde{G}_i|G_i) = rac{P(x_i^h|\tilde{G}_i,\delta^2)}{P(x_i^h|G_i,\delta^2)}$$

- $R_{prior}(\tilde{G}_i|G_i) = \frac{P(\tilde{G}_i)}{P(G_i)}$
- Probability of proposing \tilde{G}_i given G_i : $\mathcal{Q}(\tilde{G}_i|G_i) = \frac{1}{p2^{K_i}}$ $\Rightarrow R_{Proposal}(\tilde{G}_i|G_i) = 1$

First evaluation: no structure change

≣ ୬୍ର୍୍

Binomial prior (no structure change)

• Area Under Precision Recall Curve (AUPRC)

3 N

Binomial prior: original MCMC scheme + segment coupling

Binomial prior: with multi-segs moves

Simulations with structure changes

• Number of changes per node:

Poisson with mean $\lambda_{changes} = 0.25, 0.5, 1$

• Binomial prior (hard coupling): AUPRC

0.51	0.54	0.56	0.6	0.63	0.66	0.4				
0.54	0.56	0.59	0.61	0.65	0.65	0.5				
).54	0.59	0.6	0.63	0.64	0.65	0.6				
	0.6	0.62	0.64	0.65	0.64	0.7	a D			
0.56	0.6	0.62	0.64	0.65	0.64	0.7				
0.59	0.62	0.63	0.63	0.64	0.62	0.8				
).63	0.62	0.63	0.62	0.62	0.61	0.9				
0.4	0.5	9.0	0.7	0.8	6.0					
		,	.					. =		

Binomial prior (hard coupling): with multi-segs move

- DQC

Exponential prior (hard coupling): with multi-segs move

• Area Under Precision Recall Curve

Comprehensive simulation analysis

S. Lèbre sophie.lebre@lsiit-cnrs.unistra.fr ARTIVA network with segment coupling inference

- Modelling regulatory networks from gene expression time series with DBN
- ARTIVA: Auto Regressive TIme VArying network
- Gradually time varying structure: segment information coupling
- Simulation study
- Real data analysis

- Gene expression across the whole life cycle of *D. melanogaster* (Arbeitman et al., 2002)
 - 4028 genes
 - 67 successive time points
 - 4 temporal segments: Embryo Larva Pupa Adult
- Comparison with previous work on 11 genes involved in muscle development
 - TESLA (Ahmed and Xing, 2009)
 - Robinson and Hartemink 2009, 2010.

Real data application

S. Lèbre sophie.lebre@lsiit-cnrs.unistra.fr

ARTIVA network with segment coupling inference

ARTIVA segments coupling

- Advantages over existing methods:
 - no need to discretize the data (\neq Robinson and Hartemink 2009, 2010)
 - allows structure changes (\neq Grzegorczyk and Husmeier, 2009, 2011)
 - all hyperparameters inferred from the data via a consistent Bayesian inference scheme (≠ Ahmed and Xing 2009)
 - includes four regularization coupling (\neq ARTIVA, Lebre et al. 2010)
- Detailed investigation of the hyperparameter inference
 ⇒ improved MCMC scheme for better convergence
- Difference hard/soft coupling seems negligeable in the investigated scenario...

4 B K 4 B K

- Investigate hard versus soft coupling
- Investigate other functional forms for information sharing

e.g. recently Wang et al (2011) : exponential prior + additional parameter for sparsity prior

Our approach : sparsity with truncated Poisson distribution \Rightarrow explore the effect this additional sparsity parameter for gene network reconstruction

Joint work with:

• Gaëlle Lelandais and Jennifer Becq

Dynamique des Structures et Interactions des Macromoécules Biologiques (DSIMB), Inserm UMRS-665, University of Paris 7.

• Frédéric Devaux

Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, Paris.

Laboratoire de Génomique des Microorganismes, CNRS FRE 3214, Université Pierre et Marie Curie, Paris.

Michael Stumpf

Centre for Bioinformatics, Imperial College London, UK Institute of Mathematical Sciences, Imperial College London, London, UK

4 B 6 4 B 6

Joint work with:

• Frank Dondelinger

Biomathematics and Statistics Scotland (BioSS), University of Edinburgh

Dirk Husmeier

School of Mathematics and Statistics, University of Glasgow and Biomathematics and Statistics Scotland (BioSS), University of Edinburgh

~ Submitted paper: "Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure"