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Motivation
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Choice of model (1/3)

Described by differential equations
(6= Boolean)

Non-linear
(6= LASSO, HMM, etc.)

Non-parametric
(6= S-system)

Auto-regressive ẋ(t) = f (x(t))
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Choice of model (2/3)

Discrete observations with additive measurement noise
(y(t) = x(t) + n(t))t=0,1,...,T

Sparsity
ẋi (t) depending of a few xj(t)

For LASSO
x(t + 1) = Ax(t)

General additive model [1], used in each dimension

xi (t + 1) = hi (x(t)) =

p∑
m=1

him(xm(t)) + bi
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Choice of model (3/3)

Kernel k(x, z) can build non-linear functions
h(z) =

∑T−1
t′=0 wt′k(x(t ′), z)

Local kernels, in one dimension,
km(x, z) = k(xm, zm)

ktot =
∑p

m=1 dmkm,
with

∑p
m=1 dm = 1 and dm ≥ 0 for all m

hi (x(t)) =

p∑
m=1

him(xm(t)) =

p∑
m=1

dim

(
T−1∑
t′=0

wt′k(xm(t), xm(t ′))

)

Gaussian kernel k(xm, zm) = exp
(
− (xm−zm)2

2σ2

)
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Identification of h

Cost functional

minC
T−1∑
t=1

(|yi (t + 1)− hi (y(t))| − ε)+ + ‖hi‖2
H (1)

From kernel trick,
‖hi‖2 =

∑
t,t′ wtwt′ (

∑
m dimk(ym(t), ym(t ′))

Alternate solving in wt by Lagrangian optimization

Finding d by reduced gradient descent [2]
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Data weighting

In (1), instead of regularization-error tradeoff term C fixed,
we use

Ct = C/t
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Network inferring

Feature selection by multiple kernel learning (FS-MKL)

Centering and reducing of data

di . feature selected for hi

j → i if dij in best 10-quantile of d
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Hyper-parameter selection

C , ε in grid ; σ = 1

Stability [3] : FS-MKL stable w.r.t data perturbation
d(C , ε, l) FS-MKL on subsamples Sl . Similarity

s(d(C , ε, l),d(C , ε, l ′)) =
< d(C , ε, l),d(C , ε, l ′) >F√
‖d(C , ε, l)‖2

F‖d(C , ε, l ′)‖2
F

Subsamples Sl by block-resampling [4]. tl random integer

Sl = (y(tl), . . . , y((tl + 0.80 ∗ T )modT ))
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Data sets

Challenge DREAM : networks of size 10 (resp. 50) with 4
times series (resp. 23) with 21 time points + steady-state and
perturbed data
IRMA [5] : network of size 5 with 2 time series (with 21 and
16 time points) + steady-state
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DREAM : AUROC
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DREAM : AUPR
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Results : IRMA

IRMA

Method AUROC neu AUPR neu

FS-MKL 0.65 0.63

LASSO 0.57 0.51

LASSO + weight 0.62 0.60

REVEAL 0.64 0.67
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Conclusion

Non-linear modeling, with low computational cost, and
feature selection for network inference

Data weighting

Perspectives

Separate functional costs, allowing introduction of new
sources of information

Consistency of multiple kernel learning with dynamical datas

15/16 A.Fouchet, J-M. Delosme et F.d’Alché-Buc Use of a sparse non-linear model based on local kernels for the inference of regulatory networks



Introduction
Model

Optimization
Network inference

Experimental results
Conclusion

[1] T Hastie, R Tibshirani - Statistical science, 1986 - JSTOR

[2] A Rakotomamonjy, F Bach, S Canu - Journal of Machine
Learning Research, 2008
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