Biological prior for network inference with Gaussian graphical models.

Application to Estrogen Receptor Status in Breast Cancer.

Marine Jeanmougin

MIA - Network Inference, Paris – February 8, 2012

Microarray data

Gene regulatory network

Which measure to use ?

- Correlation
 - Tends to group genes with close expression profiles

• Do not provide any clue on how the chain of information goes from gene to gene

Partial Correlation

• Quantify the correlation between two genes after excluding the effects of other genes

High dimensional setting

"large p, small n"

 \rightsquigarrow number of random variables (p) is much larger than the number of individuals (n)

- p(p-1)/2 possible interactions
- Handling the scarcity of data
 - Sparsity:

Among all possible interactions only a few actually take place.

Coefficient matrix with mostly zero-valued entries

Regularized Gaussian graphical model

- GGM: a well-studied framework to spot those direct relationships
- ► Dependency pattern described by the covariance matrix (independency between variables ⇔ absence of edge)
- Sparse estimation via L1-regularization

A challenging issue

A vaste space of possible network structures

Biological prior knowledge could be used to limit the set of candidate networks

Outline

1 Method

a) Biological prior definition: differential and pathway analysis

b) Network inference: regularized GGM, multitask strategy

2 Application

- a) Context: ER status in Breast Cancer
- b) Results and interpretation

3 Conclusion

Differential analysis

 $X_{ig}^{(c)}$: expression level of the ith sample for gene g under condition c

$$\mathbb{E}(X_{ig}^{(c)}) = \mu_g^{(c)} \quad \text{and} \quad \mathbb{V}(X_{ig}^{(c)}) = \sigma_g^2,$$

Null hypothesis to test:

$$\begin{cases} H_0: & \mu_g^{(1)} = \mu_g^{(2)}, \\ H_1: & \mu_g^{(1)} \neq \mu_g^{(2)}. \end{cases}$$

Limma t-statistic (Smyth 2004)

$$t_g^{\text{limma}} = \frac{\bar{x}_{\cdot g}^{(1)} - \bar{x}_{\cdot g}^{(2)}}{S_g^{\text{limma}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

- S_{g}^{limma} : Bayesian estimator of the variance
- Stabilize the estimation of gene variances

Method - Summary

Microarray data

How to interpret gene signatures in biologically meaningful terms?

 \rightsquigarrow by determining whether the signature is enriched in pathway* key actors.

Figure: Group testing for pathway analysis

* Pathway: set of gene interacting in order to achieve a specific cellular function

Under the null hypothesis of no over-representation

$$\mathbb{P}(Y \ge y) = 1 - \mathbb{P}(Y \le y)$$
$$= 1 - \sum_{i=0}^{y} \frac{\binom{s}{i}\binom{p-s}{t-i}}{\binom{p}{i}}.$$

 $\mathbb{P}(Y \ge y)$ probability of **observing at least** *y* **genes** of a **pathway of size** *t* in the signature

In practice...

Pathway Name	Genes in pathway
HER-2 Signaling in Breast Cancer	CCNE1,CDK6,PARD6B,ERBB3,EGFR
Glioblastoma Multiforme Signaling	CCNE1,RHOB,IGF1R,CDK6,EGFR
Estrogen-Dependent Breast Cancer Signaling	IGF1R,ESR1, EGFR
Small Cell Lung Cancer Signaling	CCNE1,CDK6,BCL2
Aryl Hydrocarbon Receptor Signaling	CCNE1,TFF1,CDK6,ESR1

Table: Results of pathway analysis

Pathways do not clearly represent distinct entities !
 we need to summarize the set of pathways found significant

Method - Summary

Method Network Inference

R package SIMoNe : general settings

- Enables inference of undirected networks:
 - ▷ In a Gaussian graphical models (GGM) framework
 - Multitask inference strategy: joint estimation of the graphs by coupling the estimation problems
- Based on partial correlation coefficients

Chiquet et al. 2010, Inferring Multiple Graphical Models. Statistics and Computing

Graphical model

Def.: Probabilistic model for which a graph denotes the conditional independence structure between random variables.

Gaussian model for an i.i.d. sample

- Let $\mathcal{P} = \{1, ..., p\}$ be a set of nodes (i.e. genes)
- $X = (X_1, ..., X_p)^T$ is the signal over this set (i.e. the gene expression levels), such as: $X \sim \mathcal{N}(\mathbf{0}_p, \Sigma)$
- Let Θ be the parameter to be inferred (i.e. the edges)

$$\triangleright \Theta = (\theta_{ij})_{i,j\in\mathcal{P}} \triangleq \mathbf{\Sigma}^{-1} \text{ is the concentration matrix.}$$

$$\triangleright \operatorname{cor}_{ij|\mathcal{P}\setminus\{i,j\}} = -\theta_{ij}/\sqrt{\theta_{ii}\theta_{jj}} \text{ for } i \neq j$$

Interpretation

If 2 nodes *i* and *j* are partially uncorrelated, no edge is inferred:

 $X_i \perp X_j | X(\mathcal{P} \setminus \{i, j\}) \Leftrightarrow \theta_{ij} = 0$

After a simple rescaling Θ can be interpreted as the adjacency matrix

conditional dependency or non null partial correlation between

Method - Network Inference

Let $\mathbf{S} = n^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{X}$ be the empirical variance-covariance matrix.

- S^{-1} is not defined for n < p.
- If n < p, neither Θ nor its support can be estimated
- The need for regularization is huge

Estimation: a penalized likelihood approach

$$\hat{\Theta}_{\lambda} = \arg \max_{\Theta} \mathcal{L}(\Theta; \text{data}) - \lambda \operatorname{pen}_{\ell_1}(\Theta),$$

- \mathcal{L} is the model log-likelihood,
- $pen_{\ell_1} = ||\Theta||_{\ell_1}$ is a penalty function tuned by $\lambda > 0$.

It performs:

- 1 regularization (needed when $n \ll p$),
- 2 selection (sparsity induced by the ℓ_1 -norm)

Take into account the core-pathways information as an *a-priori* knowledge:

 \leadsto Edges between two genes of the same core-pathway are less penalized

Statistical approach

Use adaptive penalty parameters for different coefficients

Let Z be the set of indicator variable for nodes

$$\hat{\Theta}_{\lambda} = \arg \max_{\Theta} \mathcal{L}(\Theta; data) - \lambda \| \mathbf{P}_{\mathbf{Z}} \star \Theta \|_{\ell_1},$$

where $\textbf{P}_{\textbf{Z}}$ is a matrix of weights depending on the core-pathway membership Z.

Method - Network Inference

Multitask inference

- \leadsto How to deal with various conditions ?
 - Assumption: strong relationship between both networks
 - ▷ Approach: joint estimation of the graphs by coupling the estimation problems

Consider C conditions where the same p genes are measured

Graphical coop-Lasso

$$\max_{\boldsymbol{\Theta}^{(c)}} \sum_{c=1}^{C} \mathcal{L}\left(\boldsymbol{\Theta}^{(c)}; \mathsf{data}\right) \\ - \lambda \sum_{\substack{i,j \in \mathcal{P} \\ i \neq j}} \left\{ \left(\sum_{c=1}^{C} \left[\boldsymbol{\theta}_{ij}^{(c)}\right]_{+}^{2}\right)^{1/2} + \left(\sum_{c=1}^{C} \left[\boldsymbol{\theta}_{ij}^{(c)}\right]_{-}^{2}\right)^{1/2} \right\},$$

where $[u]_{+} = \max(0, u)$ and $[u]_{-} = \min(0, u)$.

- Group-lasso like penalty
- Disconnect the activation of up and down regulation

Method - Network Inference

▷ $Q = \{1, ..., Q\}$ of given overlapping core-pathways ▷ $Z_{iq} = 1$ if $i \in q$ and 0 otherwise

Maximisation Problem

$$\max_{\boldsymbol{\theta}^{(c)}} \sum_{c=1}^{C} \mathcal{L}\left(\boldsymbol{\Theta}^{(c)}; \text{data}\right) - \lambda \sum_{\substack{i,j \in \mathcal{P} \\ i \neq j}} \rho_{\mathbf{Z}_{i}\mathbf{Z}_{j}} \left\{ \left(\sum_{c=1}^{C} \left[\boldsymbol{\theta}_{ij}^{(c)}\right]_{+}^{2}\right)^{1/2} + \left(\sum_{c=1}^{C} \left[\boldsymbol{\theta}_{ij}^{(c)}\right]_{-}^{2}\right)^{1/2} \right\}, \quad (1)$$

where $[u]_+ = \max(0, u)$ and $[u]_- = \min(0, u)$ and the coefficients of the penalty are defined as:

$$\rho_{\mathbf{Z},\mathbf{Z}_{j}} = \begin{cases}
\sum_{q,\ell \in \mathcal{Q}} Z_{iq}Z_{j\ell} \frac{1}{\lambda_{in}}, & \text{if } i \neq j, \text{ and } q = \ell, \\
\sum_{q,\ell \in \mathcal{Q}} Z_{iq}Z_{j\ell} \frac{1}{\lambda_{out}}, & \text{if } i \neq j, \text{ and } q \neq \ell, \\
1, & \text{otherwise.}
\end{cases}$$
(2)

Method - Summary

Application ER status in breast cancer

Breast cancer in a few words

An heterogeneous disease (5 subtypes)

- Presence (ER+)/absence (ER-) of estrogen receptors: an essential parameter of tumor characterization.
- \leadsto Understanding the molecular mechanism of ER status: a key issue for treatment and prognosis

Inference of regulation networks under ER+ and ERconditions

ER -

Comparison of regulation patterns

Protein trafficking

Small molecules biochemistry

Figure: Core pathways

Figure: Sub-network inferred from the ER status signature

Anti-apoptotic mechanisms

Common regulations

Estrogen receptor (ESR1) - BCL2 (Peterson at *al.* 2007)

ESR1 - EGFR/IGF1R (Salvatori et al. 2000, Oesterreich et al. 2001)

Specific regulations

EGF receptor family: ERBB3 - ERBB4 (Lee et *al.* 2001) CDK6 - IGF1R

Figure: Anti-apoptotic mechanisms

Summary

- Very challenging issue
- Introducing biological priors reduce the space of possible networks
- Promising application on Breast cancer dataset
- Importance of missing covariates

 \rightsquigarrow Persepectives: need for integration of heterogeneous omics data.

Acknowledgments

J. Chiquet

C. Charbonnier

M. Guedj

C. Ambroise

Acknowledgements

Statistic & Genome Laboratory

Christophe Ambroise Julien Chiquet Bernard Prum

Michèle, Carène, Claudine, Catherine, Camille, Etienne, Pierre, Gilles, Cecile, Maurice, Marie-Luce, Anne-Sophie, Cyril, Justin, Van-Hanh, Yolande, Sarah, Marius.

Jan, Caroline, Fabrice, Mickaël, Matthieu.

Pharnext

Mickaël Guedj

Serguei Nabirotchkin

Ilya Chumakov