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PPI of Saccharomyces C.



Questions

Find some structure

I identify ”independent modules”

I classify the nodes into few classes of nodes with similar connections,
i.e. connected to the same nodes.

Same questions for for social and ecological networks.



Links among Web pages between political blogs prior to
the 2004 U.S. Presidential election reveals two natural and
well-separated clusters. 1

1Image from http://wwwpersonal. umich.edu/ ladamic/img/politicalblogs.jpg
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Transcriptional regulatory network of E. Coli

I nodes are operons

I edges between 2
operons if one regules
the other

I known properties:
sparseness, no
feed-back circuits,
hierarchical
organization.

Data from Shen-Or et al. Nature genetics, 2002



Mixnet results for TRN of E. Coli

MixNet Classes
1 2 3 4 5

1 . . . . .
2 6.40 1.50 1.34 . .
3 1.21 . . . .
4 . . . . .
5 8.64 17.65 . 72.87 11.01

alpha 65.49 5.18 7.92 21.10 0.30

Meta Hierarchical structure, Meta
Single Input Modules and Feed
Forward Loops.



Macaque Cortex Network

I nodes are cortical
regions

I edges between 2
regions if one is
connected to the
other

I known properties:
highly connected
network, central and
”provincial hubs”.

Data from Sporns et al. PLoS one, 2007



Mixnet results for Cortex network

MixNet Classes
1 2 3 4 5 6 7 8

1 75.0 58.9 100.0 43.7 2.8 3.6 10.0 .
2 44.7 76.1 71.4 85.7 3.2 12.2 25.7 .
3 100.0 42.9 45.7 50.0 55.5 28.6 20.0 .
4 6.2 92.8 50.0 100.0 11.1 42.9 100.0 .
5 4.2 6.4 66.6 27.8 23.6 4.8 4.4 .
6 8.9 12.2 28.6 42.9 12.7 76.2 31.4 1.8
7 15.0 45.7 . 80.0 6.7 42.9 100.0 45.0
8 . . . 18.7 . 7.1 62.5 57.1

alpha 17.0 14.9 2.1 4.3 19.2 14.9 10.6 17.0

Central and provincial
hubs well identified.



Food-web network

I the food web shows 5 levels of organization: plants (circle), herbivores
(box), parasitoids (parallelogram), hyperparasitoids (triangle) and
hyper-hyperparasitoids (diamond).

I a trophic link is considered between two insects when one insect is
observed within one host

I known properties: hierarchic organization.

Data from Dawah et al. Journal of animal ecology, 1995, and Martinez et al. Ecology, 1999



Mixnet results for Food-Web network

MixNet Classes
1 2 3 4 5 6 7

1 . . 16.3 . . . .
2 10.6 . . . . . .
3 . . . . . . .
4 . . 2.3 6.3 . . .
5 . . 2.6 . 30.0 . .
6 90.2 22.6 . . . . .
7 19.2 . . 53.5 . . .

alpha 14.0 44.4 8.6 22.3 8.0 1.3 1.3

The 5 levels are well identified
plus a specific community. Lo-
cal hierarchies are detected.
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Two definitions of what is a cluster in a graph

I Modularity or Communities : a cluster is composed of nodes highly
connected to members of the same cluster and loosely connected to
members of other clusters.

I Structural Equivalence of Actors defined by Lorrain and White : two
actors are structurally equivalent if they have identical relational ties
to and from all the actors in a network.

2 Communities or modules

4 Structurally Equivalent Subsets



Example

communities structurally equivalent subsets
2 clusters

P10

H1 H3H2 H5H4

P7P6 P9P8 P10

H1 H3H2 H5H4

P7P6 P9P8

4 clusters

P10

H1 H3H2 H5H4

P7P6 P9P8 P10

H1 H3H2 H5H4

P7P6 P9P8



Basic notations

Let a graph :

I G = (V ,E ), V the set of n vertices (or nodes) and E ⊂ V × V the
set of edges

I W the adjacency matrix (weighted or not)

I d
(i)
i and d

(o)
i inner and outer degree of node i

P10

H1 H3H2 H5H4

P7P6 P9P8



Similarity transformation on a graph
The Jaccard’s similarity index (Ji,j = number of nodes connected to i and j

number of nodes connected to i or j ):

SJ =
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Markov Cluster algorithm (MCL)

Random walk from nodes to nodes along edges. Probability of a move
along an edge proportional to its weight. Transition matrix of the Markov
chain: T = (Tij), the probability of going from node i to node j in one
step.
The MC is assumed to be ergodic (irreducible and aperiodic) → one final
state. Several final states needed to obtain several clusters. Thus the MC
is modified (by an inflation operation). MCL alternates two operations :

I T (2k) = (T (2k−1))e , progress of the random walk.

I T (2k+1) = Γr (T (2k)), inflation operation. Γr is a term by term r
power operator followed by a normalization.

e and r are tuning parameters. The algorithm ends when T (k) is
idempotent. Two nodes are classified in the same class if they have the
same final state.
MCL need ergodicity of the Markov Chain, by example by adding
self-loops



Markov Cluster algorithm (MCL)

hight weight on self-loopsa low weight on self-loopsb

hight ek ,
low rk

P10

H1 H3H2 H5H4

P7P6 P9P8 P10

H1 H3H2 H5H4

P7P6 P9P8

low ek ,
hight rk

P10

H1 H3H2 H5H4

P7P6 P9P8 P10

H1 H3H2 H5H4

P7P6 P9P8

aWii = 1, unitary self-loops
b 1

10
weighted self-loops



MCL

Tunning parameters :

I parameters of speed of Markov Chain in comparison of speed of
inflation

I modification of graph (weight of self-loops for example)

Properties

I MCL detects SES (in a modified graph with self-loops for example)

I Efficient for highly connected graphs, and less efficient for sparse
graphs.

I Largely used by the Bioinformatics community...but rare in other
scientific communities.



Pons-Latapy distance

Not a clustering method !
Main idea:

I Random walk stopped at t steps

I Distance between nodes = euclidian distance between rows of T t .
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Tunning parameter : t and self-loops added is necessary.



Spectral Clustering

I Laplacian matrix of the graph G : L = DW −W .

I G has k connected components ⇔ L has a zero-eigenvalue with
multiplicity k .

I Each eigenvector is composed of zero and non-zero values
(corresponding to the nodes of the connected component).

I → Spectral Clustering = k-means procedure in the space generated
by the first-k eigenvectors corresponding to the smallest eigenvalues.

Many variants :

I unnormalized Spectral Clustering : first k eigenvectors of L
corresponding to λ1 ≤ λ2 ≤ ...λk .

I Shi-normalized Spectral Clustering : first k eigenvectors of D−1
W L,

corresponding to λ1 ≤ λ2 ≤ ...λk .

I Ng-normalized Spectral Clustering : first k eigenvectors of

LN = I − D
−1/2
W WD

−1/2
W , corresponding to λ1 ≤ λ2 ≤ ...λk .

I Absolute Eigenvalues Spectral Clustering : first k eigenvectors of
I − LN , corresponding to |λ1| ≥ |λ2| ≥ ...|λk |.



Spectral Clustering

Ng-normalized Absolute Eigenvalues
2 clusters

P10

H1 H3H2 H5H4

P7P6 P9P8 P10

H1 H3H2 H5H4

P7P6 P9P8

4 clusters

P10

H1 H3H2 H5H4

P7P6 P9P8 P10

H1 H3H2 H5H4

P7P6 P9P8



Spectral clustering

Features :

I undirected graphs only

I Absolute Eigenvalues Spectral Clustering is the only SC method that
detects SES.

Tunning parameters :

I number of clusters

I variant



Edge-Betweeness

I Betweeness for a given edge = number of shortest paths using this
edge

I quantify the importance of a link to maintain the graph connected

I Link between communities have a higher betweeness than links
inside communities.

A divisive algorithm :

I Compute edge-betweeness and cut links with a decreasing
betweeness order while the graph is connected

I Apply the algorithm on each connected component

The result is a hierarchical tree of sets.

Features : Detect communities.

Tunning parameters : The number of clusters ie the depth of the
hierarchical tree.



Hierarchical agglomerative clustering algorithm

Starting with single node cluster, this is a recursive algorithm :

I Find nearest couple of sets

I Merge couple of sets, compute distances, and apply recursively the
algorithm

Feature : Detect communities

Tunning parameters : The number of cluster, and the method to
computes distance of merged sets to others.
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Modularity criterion

Modularity of a partition C : MC =
∑

q(eqq − a2
q)

(' 0 if no modularity, ' 1 if Q unconnected cliques)

I eql = 1
2m

∑
ij Wijδq(i)δl(j), proportion of edges between class q and l ,

I m = total number of edges

I δq(i) is equal to one if i is in the class q and zero if not

I aq =
∑

l eql proportion of edges concerning a node of class q.

Guimera : Optimization by a Simulated Annealing (SA), with levels of
temperature decreasing exponentially. Three moves possible :

I individual move of a node from a class to another

I merge two classes

I split a class into two classes, (SA inside SA)



Modularity criterion

Features : Find communities

Optimization parameters : Decreasing speed of temperature of the 2
simulated annealing.

High computation cost



Cut cost

I Suppress some edges from G to obtain an unconnected partition of
vertices with a minimum modification cost.

I cut cost between two subset of nodes :
cut(V1,V2) =

∑
v1∈V1,v2∈V2

Wv1,v2

I cut cost of one partition :
cut(C ) =

∑
q<l cut(Cq,Cl) = 1

2

∑Q
q=1 cut(Cq,V \ Cq).

I other definitions of the cost are possible...

Obtaining the best Cut partition is NP-hard.
Algorithms:

I heuristics

I greedy algorithms

I simulated annealing
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Stochastic Block Model

Classes of nodes (Cq), q = 1,Q,

Model:

P(Wij = 1‖i ∈ Cq, j ∈ Cl) = πql

and P(i ∈ Cq) = αq

Consistent estimation procedures (ML impossible, MCMC for small
graphs < 200 nodes, moments method (only theoretical results),
variational method (best method for 200 to 5000 nodes) or based on the
degrees for very large graphs: find

I number of classes Q (BIC, AIC, ICL...)

I parameters estimates for α and π.

Clusters are obtained as a sub-product of the parameters estimation.



SBM, a versatile model

Description Graph Q π

Erdos

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

1 p

Hubs 4


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


communities 2

(
1 ε
ε 1

)

Hierarchical 5


0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0





Generalized SBM

weighted graph
(Wij‖i ∈ Cq, j ∈ Cl) ∼ Lql

Lql : Poisson or Normal distributions.

covariates Information available for edges (or nodes) may be used in
the model:

(Wij‖i ∈ Cq, j ∈ Cl) ∼ P
(
λql exp(βTYij

)
with
Yij vector of covariates for the link i ↔ j .

Clusters interpretation change with covariables

I Parameter estimation: Variational algorithm

I Packages Mixer (Bernoulli, R), mixnet (Bernoulli, C),
Wmixnet(GSBM, C).



Karate Club

I nodes: members of the club

I edge between two members
if they have a social relation
external to the club

I after the data collection, a
split divided the club in two
parts (circles and squares).

Data from W. W. Zachary, An information flow model for conflict

and fission in small groups, Journal of Anthropological Research

33, 452-473 (1977).



SBM results
SBM Classes

Π̂ 1 2 3 4

1 100 53 16 16
2 53 12 0 7
3 16 0 8 73
4 16 7 73 100

n × α̂ 3 13 16 2

The split is exactly pre-
dicted and the leaders role
is underlined.



MS-Interactome data

I MS-Interactome (Ewing et al.): first large-scale study of
protein-protein interactions in human cells using a mass
spectrometry approach.

I 3,494 interactions between 1,561 proteins

I Bait proteins chosen based on known functional annotation and
implied disease association.

I One third of the 338 bait proteins are disease-related ones, mainly
involved in cancer

I Data previously analyzed by Marras et al. using a two-steps
procedure: first a deterministic method allows to find large core and
community structures and second a stochastic method (such as
mixture model) permits to uncover fine-grained interactome
components.

I The following analysis is made using VEM method using package
Mixnet.



Number of groups

Best choices: Q = 23 (AIC) and Q = 8 (ICL).
x-axis : number of groups.



Meta-Network obtained with SBM

Figure: Representation of the 18 groups obtained with SBM. Edges between
two nodes are present only if the probability of connection between them is
greater than 0.015. The size of each node and the size of the police are
proportional to the number of proteins contained in it. The width of the edges
are proportional to the probability of connection between the corresponding
nodes



GO-Characteristics of the groups

Description of the first groups. The proteins have been affected to one
group if their probability of pertaining to the group is greater than 0.5.

group # proteins # unrec-
ognized
proteins

GO Term Corrected P-Value

1 44 2 Cellular metabolic Process & Apoptose 4.10−7

2 79 11 RNA Processing 5.10−3

3 12 cell proliferation 8.10−3

4 211 24 intracellular transport 9.10−8

5 55 11 macromolecule localization 1.10−4

6 4 protein targeting and transport 1.10−6

7 353 57 Cellular metabolic Process 5.10−12

8 111 12 macromolecule modification 3.10−16

9 372 73 protein complex assembly 3.10−8

10 96 14 phosphorylation 7.10−7

11 5 2 negative regulation of ubiquitin-protein ligase activ-
ity involved in mitotic cell cycle

1.10−5

12 15 negative regulation of ubiquitin-protein ligase activ-
ity involved in mitotic cell cycle

2.10−38

13 2 RNA metabolic process 1.10−2

14 8 1 induction of apoptosis by intracellular signals 5.10−3

15 8 1 ribosome biogenesis 1.10−3

16 110 27 translation 4.10−25

17 2 regulation of cellular process 8.10−2

18 19 1 translational elongation 4.10−38

19 55



More about the groups

I most of the groups can be identified by at least one GO term with
low corrected P-values

I 234 proteins were not recognized by GO term Finder → SBM
proposes a classification for unknown proteins.

I 17th group composed of two proteins highly related with tumor
progression: the Von Hippel Lindau (VHL) tumor suppression
protein and MCC, which blocks cell cycle progression.

I group 13, composed of two proteins Tgfb1i4 (transforming growth
factor beta 1 induced transcript), which is a growth factor, and
RNSP1, which is a part of a post-splicing multiprotein complex
regulating exons.



Continuous Stochastic bloc model (CSBM)

I Each node i : weighted mean of Q Extremal Hypothetical Vertices
(EHV)

I weight Zi = (zi1, . . . , ziQ), ziq ≥ 0,
∑

q ziq = 1.

I Pij =
∑

q,l=1,Q ziqaqlzjl
I aql ∈ [0, 1]: connectivity between EHV q and l .

I Xij ∼ B(Pij)

I Xij independent

P = ZAZ ′



CSBM results for the Karate Club

Â 1 2 3 4

1 100 100 0 0
2 100 0 0 0
3 0 0 0 100
4 0 0 100 100



Â 1 2 3 4

1 100 100 0 0
2 100 0 0 0
3 0 0 0 100
4 0 0 100 100

The split is well predicted, the role of the

leaders and the intermediate position of node

3 are enlightened.



Ecological network

Host-parasite interaction between a young pine tree and the fungi

species Armillaria ostoyae (image from C. Vacher web site)

Interaction network between tree species and parasitic fungi species in the

French forests (image from C. Vacher web site)

I 543 interactions between 51 forest tree taxa and 154 parasitic fungal
species. The network is composed of 205 vertices and 543 edges.

I bipartite graph : tree-fungus interactions are the only possible ones.

I from the database of the French governmental organization in
charge of forest health monitoring (the Département Santé des
Forêts (DSF)) for the 1972-2005 period.

I methods used for data collection described in more detail in Vacher,

C., Piou, D., and Desprez-Loustau, M.-L. (2008) PLoS ONE 3, e1740.



Results

AIC criteria → Q = 5

FT0 T1 T2 F1 F2
FT0 0 0 0 0 0
T1 0 0 0 0.996 0
T2 0 0 0 0 0.985
F1 0 0.996 0 0 0
F2 0 0 0.985 0 0

EHV= Extremal Hypothetical Vertex

I EHV0=non connected species

I EHV1=T1 and EHV2=T2 two Extreme Hypothetical Trees

I EHV3=F1 and EHV4=F2 two Extreme Hypothetical Fungus

I the only two connected EHVs are T1 and F1 and T2 and F2



Triangular representations of tree species and fungal
species as a function of their number of interactions
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Vertical axis = degree of the vertices

Horizontal axis = differentiation between two classes of species



Triangular representations of tree species and fungal
species as a function of their phylogenetic origin
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The differentiation along the horizontal axis is due to the phylogenetic origin of

Trees. Phylogenetic origin of Fungi does not matter!



Triangular representations of tree species and fungal
species as a function of their introduction status
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Aliens are rapidly (less than 600 years) integrated
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Summary
Method Type a Directed b Weighted c Goal d Tuning parameters

E.Between. A N N C none
Cut O N Y C Criteria

Modularity O Y Y C none

Spec. Clust. A N Y C or SHS method, ke

Hier. Clust. A N Y C or SHS method

MCL A Y Y SHS r f, e6, ∆g

Pons-Latapy A N Y SHS k5, ∆7

SBM M Y Y SHS k5 or none
CSBM M Y N SHS k5 or none

MBCSNh M N N C d i and k5

RDPG M N N C d9

a
A for algorithm, O for optimization, M for probabilistic model

b
Y if the method can be applied to a directed graph, N otherwise

c
Y if the method can be applied to a weighted graph, N otherwise

d
C for Community research algorithm, SHS for Structural homogeneous subset research algorithm

e
k is the number of groups

f
e and r are the importance of transition and inflation step, e

r
control the number of groups

g
Weight of self-loops added for ergodicity

h
Model-based clustering for social network

i
d is the dimension of the latent space
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Simulation design

The simulation model comes from Ecology. It is not a SBM or a CSBM
model.

I number of nodes (70-350)

I number of groups (2-10)

I connectedness index (0.3-0.9)

I compartmentalization index (0-0.95)

I nestedness index (0-0.95)



The corrected rand index

Rand index (in [0, 1]) between two partitions:

R =
number of concordant pairs of nodes

number of pairs of nodes

A pair of nodes is ”concordant” if the two partitions classify the two
nodes in the same way (in a same class or in two different classes).

The Rand index is corrected to have a zero mean when computed
between any partition and a random one.



Effect of Modularity



Effect of Nestedness



Effect of Connectedness



Effect of Number of nodes



Effect of Number of groups
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