Clustering the nodes of a graph

J.-B. LEGER and J.-J. DAUDIN

February 9, 2012

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Basic definitions](#page-13-0)

[Communities and SES](#page-14-0) [Similarity transformation](#page-17-0)

[Methods based on a algorithm](#page-18-0)

[Markov Cluster algorithm \(MCL\)](#page-19-0) [Pons-Latapy distance](#page-22-0) [Spectral Clustering](#page-23-0) [Edge-Betweeness](#page-26-0) [Hierarchical agglomerative clustering algorithm](#page-27-0)

[Methods based on a optimization criterion](#page-28-0)

[Modularity criterion](#page-29-0) [Cut cost](#page-31-0)

[Methods using a probabilistic model](#page-32-0)

[SBM](#page-33-0) [Karate Club](#page-36-0) [PPI human cells](#page-38-0) [Continuous Stochastic bloc model \(CSBM\)](#page-43-0) [Summary](#page-51-0)

KORKA SERKER ORA

[Benchmark](#page-53-0)

Sommaire

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Methods based on a algorithm](#page-18-0)

[Methods based on a optimization criterion](#page-28-0)

[Methods using a probabilistic model](#page-32-0)

[Summary](#page-51-0)

[Benchmark](#page-53-0)

PPI of Saccharomyces C.

Figure 2 | Yeast protein interaction network. A map of protein-protein interactions¹⁸ in Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements²³, illustrates that a few highly connected nodes (which are also known as hubs) hold the network together. The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal, orange = slow growth, yellow = unknown). Reproduced with permission from REF. 18 @ Macmillan Magazines Ltd.

Questions

Find some structure

- \blacktriangleright identify "independent modules"
- \triangleright classify the nodes into few classes of nodes with similar connections, i.e. connected to the same nodes.

KORK STRAIN A BAR SHOP

Same questions for for social and ecological networks.

FIG. 5: The karate club network of Zachary (figure taken from Girvan and Newman [18]).

Links among Web pages between political blogs prior to the 2004 U.S. Presidential election reveals two natural and well-separated clusters. 1

 1 Image from http://wwwpersonal. umich.edu/ ladam[ic/](#page-4-0)i[mg](#page-6-0)[/](#page-4-0)[pol](#page-5-0)[iti](#page-6-0)[c](#page-1-0)[al](#page-2-0)[bl](#page-5-0)[o](#page-6-0)[gs](#page-1-0)[.j](#page-2-0)[p](#page-5-0)[g](#page-6-0)

Sommaire

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Methods based on a algorithm](#page-18-0)

[Methods based on a optimization criterion](#page-28-0)

[Methods using a probabilistic model](#page-32-0)

[Summary](#page-51-0)

[Benchmark](#page-53-0)

Transcriptional regulatory network of E. Coli

- nodes are operons
- \blacktriangleright edges between 2 operons if one regules the other
- \blacktriangleright known properties: sparseness, no feed-back circuits, hierarchical organization.

Data from Shen-Or et al. Nature genetics, 2002

 299

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Mixnet results for TRN of E. Coli

Meta Hierarchical structure, Meta Single Input Modules and Feed Forward Loops.

 $\bar{\Xi}$

 299

イロメ イ部メ イ君メ イ君メ

Macaque Cortex Network

- nodes are cortical regions
- \blacktriangleright edges between 2 regions if one is connected to the other
- \blacktriangleright known properties: highly connected network, central and "provincial hubs".

 2990

 \equiv

Data from Sporns et al. PLoS one, 2007

イロト イ押 トイヨト イヨト

Mixnet results for Cortex network

Central and provincia hubs well identified.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Food-web network

- \triangleright the food web shows 5 levels of organization: plants (circle), herbivores (box), parasitoids (parallelogram), hyperparasitoids (triangle) and hyper-hyperparasitoids (diamond).
- \triangleright a trophic link is considered between two insects when one insect is observed within one host
- \blacktriangleright known properties: hierarchic organization.

Data from Dawah et al. Journal of animal ecology, 1[9](#page-10-0)95, and Martinez et al. Ecology, 1999 (ロトイラトイミトイミト B $2Q$

Mixnet results for Food-Web network

The 5 levels are well identified plus a specific community. Local hierarchies are detected.

KORK ERKER ER AGA

Sommaire

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Basic definitions](#page-13-0)

[Communities and SES](#page-14-0) [Similarity transformation](#page-17-0)

[Methods based on a algorithm](#page-18-0)

[Methods based on a optimization criterion](#page-28-0)

[Methods using a probabilistic model](#page-32-0)

[Benchmark](#page-53-0)

Two definitions of what is a cluster in a graph

- \triangleright Modularity or Communities : a cluster is composed of nodes highly connected to members of the same cluster and loosely connected to members of other clusters.
- \triangleright Structural Equivalence of Actors defined by Lorrain and White : two actors are structurally equivalent if they have identical relational ties to and from all the actors in a network.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Example

K ロ X (日) X (日)

Basic notations

Let a graph :

- ► $G = (V, E)$, V the set of *n* vertices (or nodes) and $E \subset V \times V$ the set of edges
- \triangleright W the adjacency matrix (weighted or not)
- \blacktriangleright d_i⁽ⁱ⁾ $j_i^{(i)}$ and $d_i^{(o)}$ $i_i^{(0)}$ inner and outer degree of node i

KORKA SERKER ORA

Similarity transformation on a graph

The Jaccard's similarity index $(J_{i,j} = \frac{\text{number of nodes connected to i and j}}{\text{number of nodes connected to i or j}})$:

Sommaire

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Basic definitions](#page-13-0)

[Methods based on a algorithm](#page-18-0)

[Markov Cluster algorithm \(MCL\)](#page-19-0) [Pons-Latapy distance](#page-22-0) [Spectral Clustering](#page-23-0) [Edge-Betweeness](#page-26-0) [Hierarchical agglomerative clustering algorithm](#page-27-0)

KORKA SERKER ORA

[Methods based on a optimization criterion](#page-28-0)

[Methods using a probabilistic model](#page-32-0)

[Benchmark](#page-53-0)

Markov Cluster algorithm (MCL)

Random walk from nodes to nodes along edges. Probability of a move along an edge proportional to its weight. Transition matrix of the Markov chain: $T = (T_{ii})$, the probability of going from node *i* to node *j* in one step.

The MC is assumed to be ergodic (irreducible and aperiodic) \rightarrow one final state. Several final states needed to obtain several clusters. Thus the MC is modified (by an inflation operation). MCL alternates two operations :

- \blacktriangleright $\mathcal{T}^{(2k)} = (\mathcal{T}^{(2k-1)})^e$, progress of the random walk.
- \blacktriangleright $\mathcal{T}^{(2k+1)} = \Gamma_r(T^{(2k)}),$ inflation operation. Γ_r is a term by term r power operator followed by a normalization.

e and r are tuning parameters. The algorithm ends when $T^{(k)}$ is idempotent. Two nodes are classified in the same class if they have the same final state.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

MCL need ergodicity of the Markov Chain, by example by adding self-loops

Markov Cluster algorithm (MCL)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 ${}^aW_{ii} = 1$, unitary self-loops

 $\frac{b}{10}$ weighted self-loops

MCL.

Tunning parameters :

- \triangleright parameters of speed of Markov Chain in comparison of speed of inflation
- \triangleright modification of graph (weight of self-loops for example)

Properties

- \triangleright MCL detects SES (in a modified graph with self-loops for example)
- \blacktriangleright Efficient for highly connected graphs, and less efficient for sparse graphs.
- \blacktriangleright Largely used by the Bioinformatics community...but rare in other scientific communities.

KORKA SERKER ORA

Pons-Latapy distance

Not a clustering method ! Main idea:

- Random walk stopped at t steps
- \blacktriangleright Distance between nodes = euclidian distance between rows of T^t .

KORK STRAIN A BAR SHOP

Tunning parameter : t and self-loops added is necessary.

Spectral Clustering

- ► Laplacian matrix of the graph $G : L = D_W W$.
- **►** G has k connected components \Leftrightarrow L has a zero-eigenvalue with multiplicity k.
- \triangleright Each eigenvector is composed of zero and non-zero values (corresponding to the nodes of the connected component).
- $\triangleright \rightarrow$ Spectral Clustering = k-means procedure in the space generated by the first-k eigenvectors corresponding to the smallest eigenvalues.

Many variants :

- **Indee in the interpolation** unnormalized Spectral Clustering : first k eigenvectors of L corresponding to $\lambda_1 \leq \lambda_2 \leq ... \lambda_k$.
- ► Shi-normalized Spectral Clustering : first k eigenvectors of $D_W^{-1}L$, corresponding to $\lambda_1 \leq \lambda_2 \leq ... \lambda_k$.
- \triangleright Ng-normalized Spectral Clustering : first k eigenvectors of $L_N = I - D_W^{-1/2} W D_W^{-1/2}$, corresponding to $\lambda_1 \leq \lambda_2 \leq ... \lambda_k$.
- \blacktriangleright Absolute Eigenvalues Spectral Clustering : first k eigenvectors of $I - L_N$, corresponding to $|\lambda_1| \geq |\lambda_2| \geq ... |\lambda_k|$.

Spectral Clustering

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

Spectral clustering

Features :

- \blacktriangleright undirected graphs only
- \triangleright Absolute Eigenvalues Spectral Clustering is the only SC method that detects SES.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Tunning parameters :

- \blacktriangleright number of clusters
- \blacktriangleright variant

Edge-Betweeness

- Betweeness for a given edge $=$ number of shortest paths using this edge
- \triangleright quantify the importance of a link to maintain the graph connected
- \triangleright Link between communities have a higher betweeness than links inside communities.
- A divisive algorithm :
	- \triangleright Compute edge-betweeness and cut links with a decreasing betweeness order while the graph is connected
	- \triangleright Apply the algorithm on each connected component

The result is a hierarchical tree of sets.

Features : Detect communities.

Tunning parameters : The number of clusters ie the depth of the hierarchical tree.

KORKA SERKER ORA

Hierarchical agglomerative clustering algorithm

Starting with single node cluster, this is a recursive algorithm :

- \blacktriangleright Find nearest couple of sets
- \triangleright Merge couple of sets, compute distances, and apply recursively the algorithm

KORKA SERKER ORA

Feature : Detect communities

Tunning parameters : The number of cluster, and the method to computes distance of merged sets to others.

Sommaire

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Basic definitions](#page-13-0)

[Methods based on a algorithm](#page-18-0)

[Methods based on a optimization criterion](#page-28-0) [Modularity criterion](#page-29-0) [Cut cost](#page-31-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

[Methods using a probabilistic model](#page-32-0)

[Benchmark](#page-53-0)

Modularity criterion

Modularity of a partition $C:\mathcal{M}_C=\sum_q (e_{qq}-a_q^2)$ (\simeq 0 if no modularity, \simeq 1 if Q unconnected cliques)

- \blacktriangleright $e_{ql} = \frac{1}{2m} \sum_{ij} W_{ij} \delta_q(i) \delta_l(j)$, proportion of edges between class q and l ,
- \blacktriangleright m = total number of edges
- \blacktriangleright $\delta_q(i)$ is equal to one if *i* is in the class q and zero if not

 \blacktriangleright $a_q = \sum_l e_{ql}$ proportion of edges concerning a node of class q.

Guimera : Optimization by a Simulated Annealing (SA), with levels of temperature decreasing exponentially. Three moves possible :

KORKAR KERKER EL VOLO

- \triangleright individual move of a node from a class to another
- \blacktriangleright merge two classes
- \triangleright split a class into two classes, (SA inside SA)

Modularity criterion

Features : Find communities

Optimization parameters : Decreasing speed of temperature of the 2 simulated annealing.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

High computation cost

Cut cost

 \triangleright Suppress some edges from G to obtain an unconnected partition of vertices with a minimum modification cost.

KORKA SERKER ORA

- \triangleright cut cost between two subset of nodes : $\textsf{cut}(\mathit{V}_1, \mathit{V}_2) = \sum_{\mathit{v}_1 \in \mathit{V}_1, \mathit{v}_2 \in \mathit{V}_2} \mathit{W}_{\mathit{v}_1, \mathit{v}_2}$
- \blacktriangleright cut cost of one partition : $\textsf{cut}(\mathcal{C})=\sum_{q< l}\textsf{cut}(\mathcal{C}_q,\mathcal{C}_l)=\frac{1}{2}\sum_{q=1}^Q\textsf{cut}(\mathcal{C}_q,\mathcal{V}\setminus\mathcal{C}_q).$
- \triangleright other definitions of the cost are possible...

Obtaining the best Cut partition is NP-hard. Algorithms:

- \blacktriangleright heuristics
- \blacktriangleright greedy algorithms
- \blacktriangleright simulated annealing

Sommaire

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Methods based on a algorithm](#page-18-0)

[Methods based on a optimization criterion](#page-28-0)

[Methods using a probabilistic model](#page-32-0) [SBM](#page-33-0) [Karate Club](#page-36-0) [PPI human cells](#page-38-0) [Continuous Stochastic bloc model \(CSBM\)](#page-43-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

[Benchmark](#page-53-0)

Stochastic Block Model

Classes of nodes (C_a) , $q = 1$, Q, Model:

$$
P(W_{ij} = 1 || i \in C_q, j \in C_l) = \pi_{ql}
$$

and $P(i \in \mathcal{C}_q) = \alpha_q$

Consistent estimation procedures (ML impossible, MCMC for small graphs $<$ 200 nodes, moments method (only theoretical results). variational method (best method for 200 to 5000 nodes) or based on the degrees for very large graphs: find

- \triangleright number of classes Q (BIC, AIC, ICL...)
- **P** parameters estimates for α and π .

Clusters are obtained as a sub-product of the parameters estimation.

KORKAR KERKER EL VOLO

SBM, a versatile model

K ロ X K 메 X K B X X B X X D X O Q Q O

Generalized SBM

weighted graph

$$
(W_{ij}||i\in\mathcal{C}_q, j\in\mathcal{C}_l)\sim\mathcal{L}_{ql}
$$

 $\mathcal{L}_{\mathit{ql}}$: Poisson or Normal distributions. covariates Information available for edges (or nodes) may be used in the model:

$$
(W_{ij}||i \in C_q, j \in C_l) \sim \mathcal{P}\left(\lambda_{ql} \exp(\beta^T Y_{ij})\right)
$$

KORKA SERKER ORA

with

 Y_{ii} vector of covariates for the link $i \leftrightarrow j$. Clusters interpretation change with covariables

- \blacktriangleright Parameter estimation: Variational algorithm
- ▶ Packages Mixer (Bernoulli, R), mixnet (Bernoulli, C), Wmixnet(GSBM, C).

Karate Club

FIG. 5: The karate club network of Zachary (figure taken from Girvan and Newman [18])

- \triangleright nodes: members of the club
- \blacktriangleright edge between two members if they have a social relation external to the club
- \blacktriangleright after the data collection, a split divided the club in two parts (circles and squares).

Data from W. W. Zachary, An information flow model for conflict and fission in small groups, Journal of Anthropological Research 33, 452-473 (1977).

KORKA SERKER ORA

SBM results

The split is exactly predicted and the leaders role is underlined.

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

MS-Interactome data

- \triangleright MS-Interactome (Ewing et al.): first large-scale study of protein-protein interactions in human cells using a mass spectrometry approach.
- \triangleright 3,494 interactions between 1,561 proteins
- ▶ Bait proteins chosen based on known functional annotation and implied disease association.
- \triangleright One third of the 338 bait proteins are disease-related ones, mainly involved in cancer
- \triangleright Data previously analyzed by Marras et al. using a two-steps procedure: first a deterministic method allows to find large core and community structures and second a stochastic method (such as mixture model) permits to uncover fine-grained interactome components.
- \triangleright The following analysis is made using VEM method using package Mixnet.

Number of groups

Best choices: $Q = 23$ (AIC) and $Q = 8$ (ICL). x-axis : number of groups.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Meta-Network obtained with SBM

GO-Characteristics of the groups

Description of the first groups. The proteins have been affected to one group if their probability of pertaining to the group is greater than 0.5.

More about the groups

- \triangleright most of the groups can be identified by at least one GO term with low corrected P-values
- ▶ 234 proteins were not recognized by GO term Finder \rightarrow SBM proposes a classification for unknown proteins.
- \blacktriangleright 17th group composed of two proteins highly related with tumor progression: the Von Hippel Lindau (VHL) tumor suppression protein and MCC, which blocks cell cycle progression.
- \triangleright group 13, composed of two proteins Tgfb1i4 (transforming growth factor beta 1 induced transcript), which is a growth factor, and RNSP1, which is a part of a post-splicing multiprotein complex regulating exons.

KORKAR KERKER EL VOLO

Continuous Stochastic bloc model (CSBM)

- \triangleright Each node *i* : weighted mean of Q Extremal Hypothetical Vertices (EHV)
- ► weight $Z_i = (z_{i1}, \ldots, z_{iQ})$, $z_{iq} \geq 0$, $\sum_q z_{iq} = 1$.
- \blacktriangleright $P_{ij} = \sum_{q, l=1, Q} z_{iq} a_{ql} z_{jl}$
- \triangleright a_{ql} ∈ [0, 1]: connectivity between EHV q and l.
- \blacktriangleright X_{ii} ∼ B(P_{ii})
- \blacktriangleright X_{ii} independent

 $P = ZAY'$

KORK ERKER ADE YOUR

CSBM results for the Karate Club

イロメ 不優 メイ君 メイ君 メー 君一

The split is well predicted, the role of the leaders and the intermediate position of node 3 are enlightened.

Ecological network

Interaction network between tree species and parasitic fungi species in the French forests (image from C. Vacher web site)

- \triangleright 543 interactions between 51 forest tree taxa and 154 parasitic fungal species. The network is composed of 205 vertices and 543 edges.
- \triangleright bipartite graph : tree-fungus interactions are the only possible ones.
- \triangleright from the database of the French governmental organization in charge of forest health monitoring (the Département Santé des Forêts (DSF)) for the 1972-2005 period.
- \triangleright methods used for data collection described in more detail in Vacher. C., Piou, D., and Desprez-Loustau, M.-L. (2008) PLoS ONE 3, e1740.

Results

AIC criteria $\rightarrow Q = 5$

 $EHV =$ Extremal Hypothetical Vertex

- \blacktriangleright EHV0=non connected species
- \blacktriangleright EHV1=T1 and EHV2=T2 two Extreme Hypothetical Trees
- \triangleright EHV3=F1 and EHV4=F2 two Extreme Hypothetical Fungus
- \triangleright the only two connected EHVs are T1 and F1 and T2 and F2

Triangular representations of tree species and fungal species as a function of their number of interactions

KORK ERKER ADE YOUR

Vertical axis $=$ degree of the vertices Horizontal axis $=$ differentiation between two classes of species Triangular representations of tree species and fungal species as a function of their phylogenetic origin

KORK ERKER ADE YOUR

The differentiation along the horizontal axis is due to the phylogenetic origin of Trees. Phylogenetic origin of Fungi does not matter!

Triangular representations of tree species and fungal species as a function of their introduction status

KORK ERKER ADE YOUR

Aliens are rapidly (less than 600 years) integrated

Sommaire

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Methods based on a algorithm](#page-18-0)

[Methods based on a optimization criterion](#page-28-0)

[Methods using a probabilistic model](#page-32-0)

[Summary](#page-51-0)

[Benchmark](#page-53-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Summary

a A for algorithm, O for optimization, M for probabilistic model

- b_{Y} if the method can be applied to a directed graph, N otherwise
- c_V if the method can be applied to a weighted graph, N otherwise
- $d_{\mathsf C}$ for Community research algorithm, SHS for Structural homogeneous subset research algorithm
- e_k is the number of groups
- f_e and r are the importance of transition and inflation step, $\frac{e}{r}$ control the number of groups
- $g_{\text{Weight of self-loops added for ergodicity}}$
- h Model-based clustering for social network
- i d is the dimension of the latent space

Sommaire

[Why ?](#page-2-0)

[Exemples](#page-6-0)

[Methods based on a algorithm](#page-18-0)

[Methods based on a optimization criterion](#page-28-0)

[Methods using a probabilistic model](#page-32-0)

[Summary](#page-51-0)

[Benchmark](#page-53-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The simulation model comes from Ecology. It is not a SBM or a CSBM model.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright number of nodes (70-350)
- \blacktriangleright number of groups (2-10)
- \triangleright connectedness index (0.3-0.9)
- \triangleright compartmentalization index (0-0.95)
- \blacktriangleright nestedness index (0-0.95)

Rand index (in $[0, 1]$) between two partitions:

$$
R = \frac{\text{number of concordant pairs of nodes}}{\text{number of pairs of nodes}}
$$

KORK ERKER ADE YOUR

A pair of nodes is "concordant" if the two partitions classify the two nodes in the same way (in a same class or in two different classes).

The Rand index is corrected to have a zero mean when computed between any partition and a random one.

Effect of Modularity

メロメ 不優 メメ 重 メメ 差 メー 差し

 2990

Effect of Nestedness

イロト イ母 トイミト イミト ニヨー りんぴ

Effect of Connectedness

イロト イ母 トイミト イミト ニヨー りんぴ

Effect of Number of nodes

KO KARK KEK KEK E YAN

Effect of Number of groups

KED KAP KED KED E LOQO