TIGRESS: Trustful Inference of Gene Regulation using Stability Selection

Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona and Jean-Philippe Vert

Centre for Computational Biology Mines ParisTech, INSERM U900, Institut Curie

November 19th, 2012

Outline

Introduction

- Regression-based inference
- TIGRESS
- Material

3 Results

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Outline

Introduction

2 Methods

- Regression-based inference
- TIGRESS
- Material

Result

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Conclusions and discussion

DREAM network inference challenge

- DREAM: Dialogue on Reverse Engineering Assessments and Methods.
- Network inference challenge: infer *in silico* and *in vivo networks*, given list of TFs (transcription factors) and gene expression data

DREAM challenge, continued

• The challenge: teams are asked to predict the 100,000 most probable interactions, along with confidence scores.

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

- Ground truth: blinded and revealed at the end.
- Evaluation: score based on AUROC and AUPR over all networks.
- 2010 results (DREAM5):

Method	Netv	Network 1		Network 3		Network 4	
	AUPR	AUROC	AUPR	AUROC	AUPR	AUROC	
GENIE3 ¹	0.291	0.815	0.093	0.617	0.021	0.518	40.28
ANOVerence ²	0.245	0.780	0.119	0.671	0.022	0.519	34.02
Naive TIGRESS	0.301	0.782	0.069	0.595	0.020	0.517	31.1

¹*Huynh-Thu et al., 2010* ²*Kueffner et al., 2012*

This work

Three main purposes:

- introduce TIGRESS: Trustful Inference of Gene REgulation using Stability Selection;
- assess the impact of the parameters, provide guidelines as to how to choose them;
- test and benchmark TIGRESS on further datasets.

Availability:

- Paper to appear in BMC Systems Biology
- Code available: http://cbio.ensmp.fr/tigress

Outline

- Regression-based inference
- TIGRESS
- Material

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Outline

Methods

Regression-based inference

- TIGRESS
- Material

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

For each TG, score all *n*_{tf} candidate interactions:

2 Rank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

Solution For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1				
TF 2				
TF n _{tf}				

Pank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

Service and TG, score all *n*_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-			
TF 2	0.97			
TF n _{tf}	0			

Pank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

Solution For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23		
TF 2	0.97	-		
TF n _{tf}	0	0		

Pank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	
TF 2	0.97	-	0.03	
TF n _{tf}	0	0	0	

ank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
TF <i>n_{tf}</i>	0	0	0	 0.76

Bank the scores altogether:

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
	•••		•••	
TF n _{tf}	0	0	0	 0.76

ank the scores altogether:

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3		TG n _{tg}
TF 1	-	0.23	0		0.11
TF 2	0.97	-	0.03	•••	0
	•••				
TF n _{tf}	0	0	0		0.76

Pank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

) For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
TF n _{tf}	0	0	0	 0.76

2 Rank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Regression-based inference

GRN Inference through feature selection

Notations

- n_{tf} transcription factors (TF), n_{tg} target genes (TG)
- Expression data: $X (n_{exp} \times n_{tg})$.
- X_a: expression levels of gene g.
- X_G: expression levels of genes in G.
- \mathcal{T}_q : candidate TFs for gene q.

Hypotheses

The expression level X_q of a TG g is a function of the expression levels $X_{\mathcal{T}_a}$ of \mathcal{T}_g :

$$X_g = f_g(X_{\mathcal{T}_g}) + \varepsilon.$$

2 A score $s_a(t)$ can be derived from f_a , for all $t \in T_a$ to assess the probability of the interaction (t, g).

TIGRESS

Outline

Methods

Regression-based inference

- TIGRESS
- Material

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

A linear model

Base idea:

$$X_g = f_g(X_{\mathcal{T}_g}) + \varepsilon = X_{\mathcal{T}_g}\beta^g + \epsilon$$

• If $\beta_t^g = 0$, no edge between g and t.

A sparse problem requires a sparsity-inducing method

• Safe to assume: few TFs regulate each TG in general. The solution is sparse (few edges in general):

$$X_g = X_{\mathcal{T}_g} \beta^g + \epsilon = \sum_{t \in \mathcal{TFs}(g)} X_t \beta_t^g + \epsilon$$

• Lasso is one of the most common sparsity-inducing algorithms:

$$\hat{\beta}^{g} = \arg\min_{\beta \in \mathbb{R}^{n_{tf}}} ||\underbrace{X_g}_{\mathsf{TG} g} - \underbrace{X_{\mathcal{T}_g}}_{\mathsf{Candidate TFs (all but g)}} \beta^{g}||_2^2 + \lambda ||\beta^{g}||_1.$$

Then, $\hat{\beta}_t^g \neq 0 \Leftrightarrow t$ regulates g.

 Alternatively to choosing a value for λ, one can control the sparsity of β^g by a number of LARS steps. Roughly, after *L* steps in the algorithm, *L* TFs are chosen, which makes it easier to compare the subproblems.

Stability Selection

- Problem: Lasso efficiency is limited:
 - when TFs are correlated, i.e. different training sets will lead to different solutions.
 - it does not provide a confidence score for each TF (no probability that the edge exists)
- Solution: *Meinshausen and Bühlmann, 2009* introduced Stability Selection with randomized Lasso:
 - Resample the experiments: run Lasso many (e.g. 1,000) times with different training sets.
 - "Resample" the variables: in each run, also weight the variables differently (randomized Lasso)

$$X_{it} \leftarrow W_t X_{it} \tag{1}$$

where $W_j \sim \mathcal{U}([\alpha, 1])$ for all $t = 1...n_{tf}$. The smaller α , the more randomized the variables; $\alpha = 1$: no randomization.

Get a frequency of selection for each TF.

Stability Selection

- Problem: Lasso efficiency is limited:
 - when TFs are correlated, i.e. different training sets will lead to different solutions.
 - it does not provide a confidence score for each TF (no probability that the edge exists)
- Solution: *Meinshausen and Bühlmann, 2009* introduced Stability Selection with randomized Lasso:
 - Resample the experiments: run Lasso many (e.g. 1,000) times with different training sets.
 - "Resample" the variables: in each run, also weight the variables differently (randomized Lasso)

$$X_{it} \leftarrow W_t X_{it} \tag{1}$$

where $W_j \rightsquigarrow U([\alpha, 1])$ for all $t = 1...n_{tf}$. The smaller α , the more randomized the variables; $\alpha = 1$: no randomization.

Get a frequency of selection for each TF.

Stability Selection path

For each TG, Stability Selection returns such a frequency path:

(example for one target gene)

Scoring

How to transform this matrix into a vector of scores?

- Original scoring (from original paper)
- Area scoring (contribution)

Scoring

How to transform this matrix into a vector of scores?

- Original scoring (from original paper)
- Area scoring (contribution)

TIGRESS

Get the final network

Finally,

- Rank all edges by decreasing score s_{L*}.
- Threshold to *N* edges.

TIGRESS summary

For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
			•••	
TF n _{tf}	0	0	0	 0.76

Rank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

TIGRESS summary

- For each TG, score all n_{tf} candidate interactions:
 - Run Stability Selection many times, get frequencies.
 - Score for each value of L.
 - Ohoose L^{*}.
 - Keep s_{L^{*}} scores:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
TF n _{tf}	0	0	0	 0.76

Rank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Parameters

TIGRESS needs four parameters to be set:

- scoring method (original, area, ...)
- number of runs R: as large as computationally affordable
- number of LARS steps L: not obvious

Outline

Introduction

Methods

- Regression-based inference
- TIGRESS
- Material

Results

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Conclusions and discussion

Material

Data

Network	♯ TF	# Genes	♯ Chips	# Edges
DREAM5 Net 1 (in-silico)	195	1643	805	4012
DREAM5 Net 3 (E. coli)	334	4511	805	2066
DREAM5 Net 4 (S. cerevisiae)	333	5950	536	3940
E. coli Net from Faith et al., 2007	180	1525	907	3812
DREAM4 Multifactorial Net 1	100	100	100	176
DREAM4 Multifactorial Net 2	100	100	100	249
DREAM4 Multifactorial Net 3	100	100	100	195
DREAM4 Multifactorial Net 4	100	100	100	211
DREAM4 Multifactorial Net 5	100	100	100	193

Outline

- Regression-based inference
- TIGRESS
- Material

Results

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Outline

Introduction

- Regression-based inference
- TIGRESS
- Material

B Results

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Conclusions and discussion

Impact of the parameters

- score = $\frac{1}{2} \log_{10}(p_{AUROC} p_{AUPR})$
- Area less sensitive than original to α and L.
- Area systematically outperforms original.
- The more runs, the better
- Best values: α = 0.4, L = 2, R = 10,000.

Number of TFs per TG

L = 2

୬ ୯.୯ 25/37

Number of TFs per TG

✓) Q (N
25/37

Number of TFs per TG

- When L is small: more variability, more sparsity.
- When *L* is large: greater number of interactions per TG, less variance.
- => L should depend on the expected network's topology

TIGRESS vs state-of-the-art

Outline

Introduction

- Regression-based inference
- TIGRESS
- Material

B Results

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Conclusions and discussion

Results on E. coli network

- TIGRESS is competitive with the best GRN inference networks on *in vitro* data.
- However: outperformed by random forests-based GENIE3.

False discovery analysis on *E. coli*

₹ ₹ ▶ ₹ ◆) Q (* 29/37

False discovery analysis on E. coli

Name	Illustration	Description
Siblings		G1 and G2 have a common parent. They are <i>siblings</i> .
Couple	G1 G2	G1 and G2 have a common child. They are a <i>couple</i> .
Grandparent/Grandchild		G1 has a child that is a parent of G2. G1 is a grandparent of G2.

False discovery analysis on E. coli

Outline

- Regression-based inference
- TIGRESS
- Material

Results

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Results

Undirected case: DREAM4

Undirected case: DREAM4 challenge

32/37

Undirected case: DREAM4 challenge

A posteriori comparison to GENIE3 (TIGRESS run using "best" parameters from *in silico* network):

Method	thod Network 1 Network 2 Network 3		Network 4		Network 5					
	AUPR	AUROC	AUPR	AUROC	AUPR	AUROC	AUPR	AUROC	AUPR	AUROC
GENIE3	0.154	0.745	0.155	0.733	0.231	0.775	0.208	0.791	0.197	0.798
TIGRESS	0.165	0.769	0.161	0.717	0.233	0.781	0.228	0.791	0.234	0.764

Overall scores:

- GENIE3: 37.48
- TIGRESS: 38.85

Outline

- Regression-based inference
- TIGRESS
- Material

- In silico network results
- In vitro networks results
- Undirected case: DREAM4

Conclusions and discussion

Conclusion

- TIGRESS provides:
 - Automatization and adaptation of the Stability Selection procedure to the GRN inference problem.
 - Area scoring setting: better results and less elasticity to parameters.
 - Srd best performer at DREAM5, confirmed second best on both in silico and E. coli networks. "Best" performer a posteriori on undirected DREAM4 networks.
 - Code, demos and data available (MATLAB). Fast (SPAMS toolbox, Mairal et al., 2009) and parallelizable.
- However: outperformed by GENIE3
 - TIGRESS uses essentially the same global framework as GENIE3...
 - ... but GENIE3 is not linear (random forests).
 - Overall: confirmation that regression-based methods belong to the state-of-the-art.

Discussion

How to choose the right model?

- The linear model is clearly not correct.
- It has high bias and low variance.
- It is also easily interpretable.
- Simple and false vs obscure and performant?
- Perpectives
 - Use chip information?
 - Group situations (operons): group Lasso may be able to solve it.

Acknowledgments

Fantine Mordelet

Paola Vera-Licona

Jean-Philippe Vert

Thank you for your attention!