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Introduction

DREAM network inference challenge

DREAM: Dialogue on Reverse Engineering Assessments and
Methods.
Network inference challenge: infer in silico and in vivo networks,
given list of TFs (transcription factors) and gene expression data
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Introduction

DREAM challenge, continued

The challenge: teams are asked to predict the 100,000 most
probable interactions, along with confidence scores.

TF 12 → TG 17 1
TF 23 → TG 5 0.99
TF 2 → TG 1 0.97

... ... ... ...

Ground truth: blinded and revealed at the end.
Evaluation: score based on AUROC and AUPR over all networks.
2010 results (DREAM5):

Method Network 1 Network 3 Network 4 Overall
AUPR AUROC AUPR AUROC AUPR AUROC

GENIE31 0.291 0.815 0.093 0.617 0.021 0.518 40.28
ANOVerence2 0.245 0.780 0.119 0.671 0.022 0.519 34.02
Naive TIGRESS 0.301 0.782 0.069 0.595 0.020 0.517 31.1

1Huynh-Thu et al., 2010
2Kueffner et al., 2012
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Introduction

This work

Three main purposes:
introduce TIGRESS: Trustful Inference of Gene REgulation using
Stability Selection;
assess the impact of the parameters, provide guidelines as to how
to choose them;
test and benchmark TIGRESS on further datasets.

Availability:
Paper to appear in BMC Systems Biology
Code available: http://cbio.ensmp.fr/tigress
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Methods Regression-based inference

Regression-based inference: main steps

Idea: consider as many problems as TGs (ntg subproblems)
subproblem g ⇔ find regulators TFs(g) of gene g

1 For each TG, score all ntf candidate interactions:
TG 1 TG 2 TG 3 ... TG ntg

TF 1
TF 2
...
TF ntf

2 Rank the scores altogether:
TF 12 → TG 17 1
TF 23 → TG 5 0.99
TF 2 → TG 1 0.97

... ... ... ...
3 Threshold to a value or a given number N of edges.
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Methods Regression-based inference

GRN Inference through feature selection

Notations
ntf transcription factors (TF), ntg target genes (TG)
Expression data: X (nexp × ntg).
Xg : expression levels of gene g.
XG: expression levels of genes in G.
Tg : candidate TFs for gene g.

Hypotheses
1 The expression level Xg of a TG g is a function of the expression

levels XTg of Tg :
Xg = fg(XTg ) + ε.

2 A score sg(t) can be derived from fg , for all t ∈ Tg to assess the
probability of the interaction (t ,g).
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Methods TIGRESS

A linear model

Base idea:

Xg = fg(XTg ) + ε = XTgβ
g + ε

If βg
t = 0, no edge between g and t .
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Methods TIGRESS

A sparse problem requires a sparsity-inducing method
Safe to assume: few TFs regulate each TG in general. The
solution is sparse (few edges in general):

Xg = XTgβ
g + ε =

∑
t∈TFs(g)

Xtβ
g
t + ε

Lasso is one of the most common sparsity-inducing algorithms:

β̂g = arg min
β∈Rntf

|| Xg︸︷︷︸
TG g

− XTg︸︷︷︸
Candidate TFs (all but g)

βg ||22 + λ||βg ||1.

Then, β̂g
t 6= 0⇔ t regulates g.

Alternatively to choosing a value for λ, one can control the sparsity
of βg by a number of LARS steps. Roughly, after L steps in the
algorithm, L TFs are chosen, which makes it easier to compare
the subproblems.
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Methods TIGRESS

Stability Selection

Problem: Lasso efficiency is limited:
I when TFs are correlated, i.e. different training sets will lead to

different solutions.
I it does not provide a confidence score for each TF (no probability

that the edge exists)
Solution: Meinshausen and Bühlmann, 2009 introduced Stability
Selection with randomized Lasso:

I Resample the experiments: run Lasso many (e.g. 1,000) times
with different training sets.

I “Resample” the variables: in each run, also weight the variables
differently (randomized Lasso)

Xit ←WtXit (1)

where Wj ; U([α,1]) for all t = 1...ntf . The smaller α, the more
randomized the variables; α = 1: no randomization.

I Get a frequency of selection for each TF.
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Methods TIGRESS

Stability Selection path

For each TG, Stability Selection returns such a frequency path:
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Methods TIGRESS

Scoring
How to transform this matrix into a vector of scores?

Original scoring (from original paper)
Area scoring (contribution)
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Methods TIGRESS

Scoring
How to transform this matrix into a vector of scores?
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Methods TIGRESS

Get the final network

Finally,
Rank all edges by decreasing score sL∗ .
Threshold to N edges.
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Methods TIGRESS

TIGRESS summary

1 For each TG, score all ntf candidate interactions:
TG 1 TG 2 TG 3 ... TG ntg

TF 1 - 0.23 0 ... 0.11
TF 2 0.97 - 0.03 ... 0
... ... ... ... ... ...
TF ntf 0 0 0 ... 0.76

2 Rank the scores altogether:
TF 12 → TG 17 1
TF 23 → TG 5 0.99
TF 2 → TG 1 0.97

... ... ... ...
3 Threshold to a value or a given number N of edges.
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Methods TIGRESS

Parameters

TIGRESS needs four parameters to be set:

scoring method (original, area, ...)
number of runs R: as large as computationally affordable
randomization level α: between 0 and 1
number of LARS steps L: not obvious
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Methods Material

Data

Network ] TF ] Genes ] Chips ] Edges
DREAM5 Net 1 (in-silico) 195 1643 805 4012
DREAM5 Net 3 (E. coli) 334 4511 805 2066
DREAM5 Net 4 (S. cerevisiae) 333 5950 536 3940
E. coli Net from Faith et al., 2007 180 1525 907 3812
DREAM4 Multifactorial Net 1 100 100 100 176
DREAM4 Multifactorial Net 2 100 100 100 249
DREAM4 Multifactorial Net 3 100 100 100 195
DREAM4 Multifactorial Net 4 100 100 100 211
DREAM4 Multifactorial Net 5 100 100 100 193
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Results In silico network results
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Results In silico network results

Impact of the parameters
L
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Area less sensitive than
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Area systematically
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Best values: α = 0.4,L =
2,R = 10,000.
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Results In silico network results

Number of TFs per TG
L = 2
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Results In silico network results

Number of TFs per TG
L = 20
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Results In silico network results

Number of TFs per TG

When L is small: more variability, more sparsity.
When L is large: greater number of interactions per TG, less
variance.

=> L should depend on the expected network’s topology
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Results In silico network results

TIGRESS vs state-of-the-art
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Results In vitro networks results
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Results In vitro networks results

Results on E. coli network
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TIGRESS is competitive with the best GRN inference networks on
in vitro data.
However: outperformed by random forests-based GENIE3.
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Results In vitro networks results

False discovery analysis on E. coli
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Results Undirected case: DREAM4

Undirected case: DREAM4 challenge
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Results Undirected case: DREAM4

Undirected case: DREAM4 challenge

A posteriori comparison to GENIE3 (TIGRESS run using "best"
parameters from in silico network):

Method Network 1 Network 2 Network 3 Network 4 Network 5
AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

GENIE3 0.154 0.745 0.155 0.733 0.231 0.775 0.208 0.791 0.197 0.798
TIGRESS 0.165 0.769 0.161 0.717 0.233 0.781 0.228 0.791 0.234 0.764

Overall scores:
GENIE3: 37.48
TIGRESS: 38.85
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Conclusions and discussion

Conclusion

TIGRESS provides:
I Automatization and adaptation of the Stability Selection procedure

to the GRN inference problem.
I Area scoring setting: better results and less elasticity to

parameters.
I 3rd best performer at DREAM5, confirmed second best on both in

silico and E. coli networks. "Best" performer a posteriori on
undirected DREAM4 networks.

I Code, demos and data available (MATLAB). Fast (SPAMS toolbox,
Mairal et al., 2009) and parallelizable.

However: outperformed by GENIE3
I TIGRESS uses essentially the same global framework as

GENIE3...
I ... but GENIE3 is not linear (random forests).
I Overall: confirmation that regression-based methods belong to the

state-of-the-art.
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Conclusions and discussion

Discussion

1 How to choose the right model?
I The linear model is clearly not correct.
I It has high bias and low variance.
I It is also easily interpretable.
I Simple and false vs obscure and performant?

2 Perpectives
I Use chip information?
I Group situations (operons): group Lasso may be able to solve it.
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Conclusions and discussion

Thank you for your attention!
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