Introduction to Modular Response Analysis

Daniel Kahn Laboratoire de Biométrie & Biologie Evolutive Lyon 1 University & INRA MIA Department

Daniel.Kahn@univ-lyon1.fr

Untangling the wires: A strategy to trace functional interactions in signaling and gene networks

Kholodenko et al. (2002), PNAS 99:12481-12486

Inverse engineering problem: given observable steady-state responses of the whole system to perturbations, deduce internal interactions

Underlying assumptions

- > Each module reaches a steady-state that is stable on its own
- Each module *i* communicates with other modules through only one molecular species x_i (this assumption can be relaxed)
- There are module-specific parameters that can be acted upon experimentally

Quantifying module interactions

Let us consider the evolution of module i:

$$\dot{x}_i = f_i(\mathbf{x}, \mathbf{p})$$

At steady-state of module i:

$$f_{i}(\mathbf{x},\mathbf{p}) = 0$$

$$\frac{\partial f_{i}}{\partial x_{i}} \frac{\partial x_{i}}{\partial x_{j}} + \frac{\partial f_{i}}{\partial x_{j}} = 0$$

$$\frac{\partial x_{i}}{\partial x_{j}} = -\left(\frac{\partial f_{i}}{\partial x_{j}}\right) / \left(\frac{\partial f_{i}}{\partial x_{i}}\right)$$

expresses the sensitivity of module i to other modules.

Quantifying module interactions

One defines local response coefficients reflecting how module i at steady-state responds to changes in the output of module j with other modules unchanged :

$$\begin{cases} r_{ij} = \left(\frac{\partial \ln x_i}{\partial \ln x_j}\right)_{\text{module } i \text{ at steady-state}} & \text{if } i \neq j \\ r_{ii} = -1 \end{cases}$$

These coefficients reflect the regulatory interactions between the modules.

Quantifying module interactions

One defines local response coefficients reflecting how module i at steady-state responds to changes in the output of module j, with other modules unchanged, under the assumption that each module communicates with other modules through only one species x_j :

$$\begin{cases} r_{ij} = \left(\frac{\partial \ln x_i}{\partial \ln x_j}\right)_{\text{module } i \text{ at steady-state}} & \text{if } i \neq j \\ r_{ii} = -1 \end{cases}$$

However they are **not directly observable** in the entire system because of interactions with other modules.

Quantifying the global system response

Global response coefficients express the observable response in module *i* when the entire system relaxes to a new steadystate in response to a perturbation p_i specific of module *j*:

$$R_{i,p_j} = \frac{d\ln x_i}{dp_j}$$

Decomposing the system response

The response of module *i* is the sum of all responses mediated by modules *k* and of the direct effect of the perturbation when i = j

$$R_{i,p_{j}} = \sum_{k \neq i} r_{ik} R_{k,p_{j}} \quad \text{for } i \neq j$$

$$R_{i,p_{i}} = \sum_{k \neq i} r_{ik} R_{k,p_{i}} + \left(\frac{\partial \ln x_{i}}{\partial p_{i}}\right)_{\text{module } i \text{ at steady-state}}$$

Inferring the regulatory structure

$$\mathbf{r} \cdot \mathbf{R}_{p} + diag(\mathbf{r}_{p}) = 0$$

where $r_{p_{i}} = \left(\frac{\partial \ln x_{i}}{\partial p_{i}}\right)_{\text{module } i \text{ at steady-state}}$
$$\mathbf{r} = -diag(\mathbf{r}_{p}) \cdot \mathbf{R}_{p}^{-1}$$

Note that \mathbf{R}_{p} is nonsingular
if $\frac{\partial \mathbf{f}}{\partial \mathbf{p}}$ and Jacobian $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ are nonsingular

Inferring the regulatory structure

$$\mathbf{r} = -diag(\mathbf{r}_{p}) \cdot \mathbf{R}_{p}^{-1}$$

whose diagonal terms are

$$-1 = -r_{p_i} \left(\mathbf{R}_{p}^{-1}\right)_{ii}$$

therefore

$$diag(r_{p}) = [diag(R_{p}^{-1})]^{-1}$$

Inferring the regulatory structure

We can therefore derive an explicit relationship to calculate the local response matrix \mathbf{r} from the global response matrix $\mathbf{R}_{\mathbf{p}}$:

$$r = -[diag(R_{p}^{-1})]^{-1} \cdot R_{p}^{-1}$$

The matrix ${\bf r}$ provides the regulatory structure of the system. It is the normalized inverse of ${\bf R}_{\rm p}$

Because these relationships derive from $\dot{x}_i = f_i(x, p) = 0$ they can also be generalized to extremal responses, not only to steady-state responses.

Introducing noise / redundancy in the data

Andrec *et al.* (2005), *J. Theoret. Biol.* 232:427-441 Sontag (2008) *Essays Biochem.* 45:161-176

Another way to posit the problem is to note that each row \mathbf{r}_i of the regulation matrix is orthogonal to n-1 response vectors \mathbf{R}_{p_j} ($j \neq i$)

As a consequence in the absence of noise \mathbf{r}_i is uniquely defined as normal to the hyperplane generated by (\mathbf{R}_{p_i})

Introducing noise / redundancy in the data

In the absence of noise adding more data would leave unchanged $rank(\mathbf{R}_{p_j}) = n-1$

However in the presence of noise (\mathbf{R}_{p_j}) will have full rank n because the noise is full rank.

One then uses SVD to reduce its rank to n-1 in order to delineate the most likely hyperplane supporting (\mathbf{R}_{p_i})

This in turn determines the most likely \mathbf{r}_i It is colinear with the left singular vector associated with the smallest singular value.

This procedure is akin to total least squares regression.

Example of MRA success

Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate

Santos et al. (2007) Nature Cell Biol. 9:324-330

D. Kahn, Modular Response Analysis

Global responses

D. Kahn, Modular Response Analysis

Local responses

D. Kahn, Modular Response Analysis

MAPK regulatory structure

Different responses of the MAPK cascade to EGF and NGF are accompanied by a different feed-back pattern. The positive loop generates a bistable behaviour in the presence of NGF. NGF (5 min)

e

2

0

Unimodal response to EGF

Bimodal response to NGF

