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Modular Response Analysis

Kholodenko et al. (2002), PNAS 99:12481-12486

Inverse engineering problem:
given observable steady-state responses 
of the whole system to perturbations, 
deduce internal interactions
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Underlying assumptions
Each module reaches a steady-state that is stable on its own

Each module i communicates with other modules through only
one molecular species xi (this assumption can be relaxed)
There are module-specific parameters that can be acted upon 
experimentally
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Quantifying module interactions
Let us consider the evolution of module i :

At steady-state of module i :

expresses the sensitivity of module i to other modules. 
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Quantifying module interactions 
One defines local response coefficients reflecting how module i 
at steady-state responds to changes in the output of module j 
with other modules unchanged :

These coefficients reflect the regulatory interactions between 
the modules. 
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Quantifying module interactions 
One defines local response coefficients reflecting how module i 
at steady-state responds to changes in the output of module j , 
with other modules unchanged, under the assumption that each 
module communicates with other modules through only one 
species xj :

However they are not directly observable in the entire system 
because of interactions with other modules.
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Quantifying the global system response
Global response coefficients express the observable response 
in module i when the entire system relaxes to a new steady- 
state in response to a perturbation pj specific of module j :
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Decomposing the system response 
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The response of module i is the sum of all responses mediated 
by modules k and of the direct effect of the perturbation when 
i = j
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Inferring the regulatory structure

p p
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Inferring the regulatory structure
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Inferring the regulatory structure 
We can therefore derive an explicit relationship to calculate the 
local response matrix r from the global response matrix Rp :

The matrix r provides the regulatory structure of the system. 
It is the normalized inverse of Rp

Because these relationships derive from 
they can also be generalized to extremal responses, 
not only to steady-state responses. 
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Introducing noise / redundancy in the data
Andrec et al. (2005), J. Theoret. Biol. 232:427-441
Sontag (2008) Essays Biochem. 45:161-176

Another way to posit the problem is to note that each row ri 
of the regulation matrix is orthogonal to n-1 response vectors

As a consequence in the absence of noise ri is uniquely 
defined as normal to the hyperplane generated by
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Introducing noise / redundancy in the data
In the absence of noise adding more data would leave 
unchanged 

However in the presence of noise will have full rank n 
because the noise is full rank.

One then uses SVD to reduce its rank to n-1 in order to 
delineate the most likely hyperplane supporting 

This in turn determines the most likely ri 
It is colinear with the left singular vector associated with the 
smallest singular value. 
This procedure is akin to total least squares regression.
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Example of MRA success

Santos et al. (2007) Nature Cell Biol. 9:324-330
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Global responses
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Local responses
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MAPK regulatory structure
Different responses of the MAPK cascade to EGF and NGF 
are accompanied by a different feed-back pattern. 
The positive loop generates a bistable behaviour in the 
presence of NGF. 
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Unimodal response to EGF



D. Kahn, Modular Response Analysis

Bimodal response to NGF
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