Inferring gene regulatory networks with
hidden variables using state space models
Andrea Rau, F. Jaffrézic, J.-L. Foulley, R. W. Doerge
February 9, 2012

Réunion du réseau méthodologique “Inférence de réseaux” (INRA / MIA)
AgroParisTech

PURDUE

%3)»,
DI
LA
PIIINX0
IIIPIN0
el
PN
ccedl

§

Sc&

S
,é

vw&(g
KLLLL

ALK

&K

PRI
BOK
AL,
KRRAALKLLS
200066

A. Rau (INRA) Inferring gene networks with hidden variables 1/21



Outline

@ Introduction
@ State space models

A. Rau (INRA) Inferring gene networks with hidden variables 2/21



Introduction

Inferring gene regulatory networks

Gene regulatory networks:

Set of genes that interact with one another (directly or indirectly) through
other genes, transcription factors, protein products

= Goal: Reverse-engineer the structure of a gene regulatory network from
(continuous) time-course gene expression data

@ Statistical challenges: noisy data, short time series, few biological
replicates, many potential interactions
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Dynamic Bayesian Networks (DBN)

Bayesian network
o Graphic structure, M = (V, E), family of conditional distributions, F,
and their parameters q

@ Topology describes relationships between nodes in terms of
conditional dependencies, must be a directed acyclic graph (DAG)

= Unfold over time to make a Dynamic Bayesian Network
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Vector Autoregressive (VAR) Process

Let y, be the P-dimensional expression observations at time t. WWe may
model the observations using a VAR process :
Yyt = Dyt 1+ v, t > 2

with D being a sparse (P x P) coefficient matrix and v; ~ N(0, %) for
diagonal covariance matrix X.

@ Non-zero elements of D define interactions
(djj # 0 = gene j regulates gene /)

@ Assumptions: time-homogeneous interactions, direct interactions
among genes from one time point to the next
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Vector Autoregressive (VAR) Process

Let y; be the P-dimensional expression observations at time t. We may
model the observations using a VAR process :
Yyt = Dyt 1+ v, t > 2

with D being a sparse (P x P) coefficient matrix and v; ~ N(0, %) for
diagonal covariance matrix X.

@ Non-zero elements of D define interactions
(djj # 0 = gene j regulates gene /)

@ Assumptions: time-homogeneous interactions, direct interactions
among genes from one time point to the next

o Improvements:
D; (e.g., ARTIVA), include hidden states in the model (EBDBN)
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State-space model with feedback loops

Xt = AXt—1 + Byt—1 +wq
Ye = Cx¢ + Dye 1+ vy

w; ~ N(0,1),v: ~ N(0, V = diag(v™1))

@ Xi,...,XT are the K-dimensional hidden states = K is fixed
e D and CB + D are "sub-identifiable” matrices (Rangel et al. 2004)

Hidden .

states

T=1
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Hierarchical Bayesian state-space model

Hierarchical Bayesian structure motivated by Beal et al. (2005):

Xt = AXt—1 + Byt—1 + wy
Yy = Cx¢ + Dys1 + vy

we ~ N(0,1), vy ~ N(0,V = diag(v!))

j=1,...,K hidden states, i =1,..., P genes
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Introduction State space models

Hierarchical Bayesian state-space model

Hierarchical Bayesian structure motivated by Beal et al. (2005):

Xt = AXt—1 + Byt—1 + wy
Y = CX¢ + Dyr—1 + vy

we ~ N(0,1), vy ~ N(0,V = diag(v!))
j=1,...,K hidden states, i = 1,..., P genes
Prior distributions:

xo ~ Nic(to, Xo)
Arows ~ Ni(0, diag(a) ™)
Brows ~ Np(oa dlag(l@)il)
rows ™ Nk(07 Vi_ldiag('Y)_l)
rows ™ Np(oa V,‘ildiag((s)_l)
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Variational Bayes State Space Model (Beal et al. 2005)

e Approximate marginal likelihood p(y|m) for model m with the a
posteriori variational probability:

Inp(y|m) > /qx(x)qg(e)lnmdxdé’

= fm(qx(X)CIg(e), Y)

@ Variational Bayes EM algorithm for hidden state and parameter
estimation, model selection performed by choosing K which
maximizes Fp(+)

@ Implemented in Matlab (but rather slow to run)

Motivation
= Propose a method based on the SSM of Beal et al. (2005) that is
computationally efficient.
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9 EBDBN Method
@ Model selection
@ Hidden state estimation
@ Parameter estimation
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1. Choice of hidden state dimension (K)

Time series method for model selection (still an open research question):

@ Construct a block-Hankel matrix of autocovariances of time-series
gene expression observations:

fi

-
3

H =

A

I_m rm—i—l r2m—1

where [ = % Zz—z_liyty’ﬂri, m is the maximum pertinent biological

time-lag between genes and their regulators (m < 3).
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1. Choice of hidden state dimension (K)

Time series method for model selection (still an open research question):

@ Construct a block-Hankel matrix of autocovariances of time-series
gene expression observations:

fi

-
3

H =

A

I_m rm—i—l r2m—1

where [ = % Z—:_:liyty’tJri, m is the maximum pertinent biological
time-lag between genes and their regulators (m < 3).

o If signal-noise ratio is large, singular value decomposition will yield K
“large” singular values = choose K to be smallest number of singular
values needed to explain 90% of total variance
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EBDBN Method Hidden state estimation

2. Hidden state estimation: Kalman filtering and
smoothing

When A, B, C, D, and V are known, the Kalman filter/smoother may be
used to recursively estimate the hidden variables:

Kalman filter (prediction and update)

K7 = A%e1 + Byi 1
% = %; +K(y: — C& — Dyc_1)

Kalman smoother (smooth estimates using all data)

)’i;’- = )/Et + ,,]]()/EtT_l - A)/Et - Byt—l)

@ K and J are the Kalman gain and smoothing matrices defined in
Kalman (1960)
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3. Parameter estimation of {A, B, C,D, V}

o Parameter set: 8 = {A,B,C,D, V}

o Hyperparameter set: ¢ = {a, 8,7, 9, py, Lo}
@ Joint likelihood:

p(x,y, Ol1) = p(Ale)p(B|B)p(V)p(C|V,v)p(D|V, 8)x
X p(X0|H0, zO)X
H p(xt‘xt—h Yi—1, A7 B)P(Yr‘xh Yi-1, C') D7 V)

t=1

@ = Use EM algorithm for hyperparameter estimation, fixing the
current values of x
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EBDBN Method Parameter estimation

Two-step implementation of the EM algorithm in practice

Fix initial values ¢(0), v(o), x(0).

At iteration i:
© EM algorithm |, with v() and x() fixed, to estimate )
o Calculate ™1 the innovation variances:

P = ST (yem — OXETY — Dy, 12 /(T = 1),

where € and D are the a posteriori means of C and D given 9 and x(!)
e Convergence criterion Ay

. ~ (] AP . ~ (i+1
@ EM algorithm I, with (+1) and x() fixed, to estimate &'
o Convergence criterion A,

)
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EBDBN Method Parameter estimation

Empirical Bayes - Dynamic Bayesian Network (EBDBN)
algorithm (Rau et al. 2010)

Stabilize
vand v
Choose K, Posterior Kaman Verify
initialize algorlthm means of filter to global
xand y to update 7 A B CD update x convergence
As |

Final network based on posterior distribution of D

= Standard Z-statistics may be computed for each edge
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© Results

@ Simulations
@ T-cell data analysis
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RET  Simulations

Data-based simulations (Zak et al. 2003)

@ P =10 genes (+ 45 other observed quantities) with expression level
derived from “realistic” interactions with regulatory motifs taken from
biological literature

@ Simulations in Matlab by integration of ordinary differential equations

e T = 500 time points

o Sub-sampling of time (T = {5, 12, 35, 50, 75, 120}), replicates
generated by adding Gaussian noise

Comparison criteria
@ Area Under the Curve of the ROC curve, sensitivity, specificity,
positive predictive value, computational time
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RET  Simulations

Simulation results
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T-cell Activation Data (Rangel et al. 2004)

T-cell data

@ Study of the response on the expression of T-cells in humans after an
ionomicine treatment; genes pre-selected for modulation following
activation, reproducibility over replicates

@ Pre-treatment: log-transformation and quantile normalization

@ P =58 genes, T = 10 time points, R = 44 replicates

Hidden state dimension of T-cell data

000020

@ Choose K = 4 via block-Hankel matrix

o Cutoff of 99.9% (Z-scores) used for
edge selection in EBDBN

Singular value

000010

0.00000
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U-cell ki alas
Results for T-cell activation data, by method

Method # Activation  # Inhibition Total Edges (%)

EBDBN(x) 435 109 544 (16.2)

EBDBN(-)! 338 214 552 (16.4)

VBSSM 233 122 355 (10.6)
VAR? 9 6 15 (0.4)

! EBDBN method with no hidden states
2 Vector Auto-Regressive (VAR) model of Opgen-Rhein and Strimmer (2007)
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@ Discussion
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Discussion

EBDBN method

@ Straightforward, EM-like estimation procedure using a state-space
model for continuous time-course gene expression data,

@ Improved computational speed (implemented in R package ebdbNet)

e All methods (EBDBN, VBSSM, VAR, ...) require a minimum number
of replicates (=~ 10) and time points (= 10) to be effective

@ Need for a set of realistic, time-course benchmark datasets

@ Open questions: What can reliably be inferred from the available
data (sub-networks, specific interactions, specific motifs)? How to
include other sources of information (e.g., ChlP-chip)? How to define
a consensus network? What about NGS data?
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Appendix: Model selection

@ AIC and BIC tend to perform poorly due to the large number of
observations and model parameters

@ In absence of error, the rank of H equals the number of hidden states
K needed to characterize the time series (obviously not true for noisy
gene expression data)

o After finding the singular value decomposition of H, there will be K

singular values of “large” amplitude, provided the signal-to-noise ratio
(SNR) is also large (SNR > 1).

o Note that for T time points in data, only the first T — 1 singular values
will be non-zero
@ Similar to choosing the number of components in a Principal
Components Analysis: choose smallest number of singular values
needed to explain 90% of the total variance



Appendix: Model selection example

Hidden State Dimension Choice

1.0
I

—— Singular values
- True hidden state dimension

0.8
|

0.6

Scaled Singular Values
0.4

Hidden State Dimension

@ Simulated data: P = 10 genes, K = 2 hidden states, T = 10 time
points, sample all elements of {A, B, C, D} from U(—1,1)
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