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AgroParisTech

A. Rau (INRA) Inferring gene networks with hidden variables 1 / 21



Introduction

Outline

1 Introduction
State space models

2 EBDBN Method
Model selection
Hidden state estimation
Parameter estimation

3 Results
Simulations
T-cell data analysis

4 Discussion

A. Rau (INRA) Inferring gene networks with hidden variables 2 / 21



Introduction

Inferring gene regulatory networks

Gene regulatory networks:

Set of genes that interact with one another (directly or indirectly) through
other genes, transcription factors, protein products

⇒ Goal: Reverse-engineer the structure of a gene regulatory network from
(continuous) time-course gene expression data

Statistical challenges: noisy data, short time series, few biological
replicates, many potential interactions
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Introduction

Dynamic Bayesian Networks (DBN)

Bayesian network

Graphic structure, M = (V ,E ), family of conditional distributions, F ,
and their parameters q

Topology describes relationships between nodes in terms of
conditional dependencies, must be a directed acyclic graph (DAG)

⇒ Unfold over time to make a Dynamic Bayesian Network
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Introduction

Vector Autoregressive (VAR) Process

Let yt be the P-dimensional expression observations at time t. We may
model the observations using a VAR process :

yt = Dyt−1 + vt , t ≥ 2

with D being a sparse (P × P) coefficient matrix and vt ∼ N (0,Σ) for
diagonal covariance matrix Σ.

Non-zero elements of D define interactions
(dij 6= 0⇒ gene j regulates gene i)

Assumptions: time-homogeneous interactions, direct interactions
among genes from one time point to the next

Improvements:
Dt (e.g., ARTIVA), include hidden states in the model (EBDBN)
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Introduction State space models

State-space model with feedback loops

xt = Axt−1 + Byt−1 + wt

yt = Cxt + Dyt−1 + vt

wt ∼ N (0, I ), vt ∼ N (0,V = diag(v−1))

x1, ..., xT are the K -dimensional hidden states ⇒ K is fixed

D and CB + D are “sub-identifiable” matrices (Rangel et al. 2004)
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Introduction State space models

Hierarchical Bayesian state-space model

Hierarchical Bayesian structure motivated by Beal et al. (2005):

xt = Axt−1 + Byt−1 + wt

yt = Cxt + Dyt−1 + vt

wt ∼ N (0, I ), vt ∼ N (0,V = diag(v−1))

j = 1, . . . ,K hidden states, i = 1, . . . ,P genes

Prior distributions:

x0 ∼ Nk(µ0,Σ0)
Arows ∼ Nk(0, diag(α)−1)
B rows ∼ Np(0, diag(β)−1)

C rows ∼ Nk(0, v−1i diag(γ)−1)
Drows ∼ Np(0, v−1i diag(δ)−1)
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Introduction State space models

Variational Bayes State Space Model (Beal et al. 2005)

Approximate marginal likelihood p(y|m) for model m with the a
posteriori variational probability:

lnp(y|m) ≥
∫

qx(x)qθ(θ)ln
p(y, x,θ|m)

qx(x)qθ(θ)
dxdθ

= Fm(qx(x)qθ(θ), y)

Variational Bayes EM algorithm for hidden state and parameter
estimation, model selection performed by choosing K which
maximizes Fm(·)
Implemented in Matlab (but rather slow to run)

Motivation

⇒ Propose a method based on the SSM of Beal et al. (2005) that is
computationally efficient.
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EBDBN Method
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EBDBN Method Model selection

1. Choice of hidden state dimension (K )

Time series method for model selection (still an open research question):

Construct a block-Hankel matrix of autocovariances of time-series
gene expression observations:

H =

 Γ̂1 Γ̂2 · · · Γ̂m
...

...
. . .

...

Γ̂m Γ̂m+1 · · · Γ̂2m−1


where Γ̂i = 1

T

∑T−i
t=1 yty′t+i , m is the maximum pertinent biological

time-lag between genes and their regulators (m ≤ 3).

If signal-noise ratio is large, singular value decomposition will yield K
“large” singular values ⇒ choose K to be smallest number of singular
values needed to explain 90% of total variance

Details
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EBDBN Method Hidden state estimation

2. Hidden state estimation: Kalman filtering and
smoothing

When A, B, C , D, and V are known, the Kalman filter/smoother may be
used to recursively estimate the hidden variables:

Kalman filter (prediction and update)

x̂−t = Ax̂t−1 + Byt−1
x̂t = x̂−t + K(yt − C x̂−t − Dyt−1)

Kalman smoother (smooth estimates using all data)

x̂Tt = x̂t + J(x̂Tt−1 − Ax̂t − B ŷt−1)

K and J are the Kalman gain and smoothing matrices defined in
Kalman (1960)
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EBDBN Method Parameter estimation

3. Parameter estimation of {A,B ,C ,D,V }

Parameter set: θ = {A,B,C ,D,V }
Hyperparameter set: ψ = {α,β,γ, δ,µ0,Σ0}
Joint likelihood:

p(x, y,θ|ψ) = p(A|α)p(B|β)p(V )p(C |V ,γ)p(D|V , δ)×
× p(x0|µ0,Σ0)×∏
t=1

p(xt |xt−1, yt−1,A,B)p(yt |xt , yt−1,C ,D,V )

⇒ Use EM algorithm for hyperparameter estimation, fixing the
current values of x
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EBDBN Method Parameter estimation

Two-step implementation of the EM algorithm in practice

Fix initial values ψ(0), v(0), x(0).

At iteration i :
1 EM algorithm I, with v(i) and x(i) fixed, to estimate ψ̃

Calculate ṽ(i+1), the innovation variances:

ṽ
(i+1)
m =

∑T
t=1(ytm − Ĉx

(i−1)
t − D̂yt−1)2/(T − 1),

where Ĉ and D̂ are the a posteriori means of C and D given ψ̃ and x(i)

Convergence criterion ∆1

2 EM algorithm II, with ṽ(i+1) and x(i) fixed, to estimate ψ̂
(i+1)

Convergence criterion ∆2
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EBDBN Method Parameter estimation

Empirical Bayes - Dynamic Bayesian Network (EBDBN)
algorithm (Rau et al. 2010)

∆3 

∆2 ∆1 

EM 
algorithm 

to update ψ 

Posterior 
means of 
A, B, C, D 

Kalman 
filter to 
update x 

Verify 
global 

convergence 

Stabilize 
 v and ψ 

Final network based on posterior distribution of D 
 

Choose K, 
initialize  
x and ψ 

⇒ Standard Z-statistics may be computed for each edge
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Results Simulations

Data-based simulations (Zak et al. 2003)

P = 10 genes (+ 45 other observed quantities) with expression level
derived from “realistic” interactions with regulatory motifs taken from
biological literature

Simulations in Matlab by integration of ordinary differential equations

T = 500 time points

Sub-sampling of time (T = {5, 12, 35, 50, 75, 120}), replicates
generated by adding Gaussian noise

Comparison criteria

Area Under the Curve of the ROC curve, sensitivity, specificity,
positive predictive value, computational time
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Results Simulations

Simulation results

EBDBN(x) EBDBN(−) VBSSM
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R = 32 replicates
T = 50 time points
(25 datasets)

Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP), PPV
= TP/(TP + FP)
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Results T-cell data analysis

T-cell Activation Data (Rangel et al. 2004)

T-cell data

Study of the response on the expression of T-cells in humans after an
ionomicine treatment; genes pre-selected for modulation following
activation, reproducibility over replicates

Pre-treatment: log-transformation and quantile normalization

P = 58 genes, T = 10 time points, R = 44 replicates

Choose K = 4 via block-Hankel matrix

Cutoff of 99.9% (Z-scores) used for
edge selection in EBDBN
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Results T-cell data analysis

Results for T-cell activation data, by method

Method # Activation # Inhibition Total Edges (%)

EBDBN(x) 435 109 544 (16.2)
EBDBN(-)1 338 214 552 (16.4)

VBSSM 233 122 355 (10.6)
VAR2 9 6 15 (0.4)
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1 EBDBN method with no hidden states
2 Vector Auto-Regressive (VAR) model of Opgen-Rhein and Strimmer (2007)
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Discussion

Discussion

EBDBN method

Straightforward, EM-like estimation procedure using a state-space
model for continuous time-course gene expression data,

Improved computational speed (implemented in R package ebdbNet)

All methods (EBDBN, VBSSM, VAR, ...) require a minimum number
of replicates (≈ 10) and time points (≈ 10) to be effective

Need for a set of realistic, time-course benchmark datasets

Open questions: What can reliably be inferred from the available
data (sub-networks, specific interactions, specific motifs)? How to
include other sources of information (e.g., ChIP-chip)? How to define
a consensus network? What about NGS data?
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Appendix: Model selection

AIC and BIC tend to perform poorly due to the large number of
observations and model parameters

In absence of error, the rank of H equals the number of hidden states
K needed to characterize the time series (obviously not true for noisy
gene expression data)

After finding the singular value decomposition of H, there will be K
singular values of “large” amplitude, provided the signal-to-noise ratio
(SNR) is also large (SNR � 1).

Note that for T time points in data, only the first T − 1 singular values
will be non-zero

Similar to choosing the number of components in a Principal
Components Analysis: choose smallest number of singular values
needed to explain 90% of the total variance



Appendix: Model selection example
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Simulated data: P = 10 genes, K = 2 hidden states, T = 10 time
points, sample all elements of {A,B,C ,D} from U(−1, 1)
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