DREAM5 Systems Genetics Challenge 3A

Gene regulatory network reconstruction using Bayesian Networks, the Dantzig selector and the Lasso: a meta-analysis

David Allouche, Christine Cierco-Ayrolles, Simon de Givry, Brigitte Mangin, Nidal Ramadan-Alban, Thomas Schiex, Jimmy Vandel, <u>Matthieu Vignes</u>

SaAB Team, INRA – MIA, Toulouse, France

Genetical Genomics

<u>**Data</u>**: 1000 Expression levels, 1000 Marker genotypes (SNP) RIL population size: *A1*: 100 individuals, *A2*: 300 ind., *A3*: 999 ind.</u>

Polymorphism

→ DNA mutations in genes - In promoter region (impact on gene activity)
 (1 marker / gene) - In coding region (modify protein structure)
 - In coding region (modify protein structure)
 « trans-effect »

→ Prior test for linear regression to detect cis (hence non-cis)-acting regulation

Probabilistic graphical models

Linear model

Graphical Gaussian Models

 \rightarrow Local regressions:

2-Lasso (Tibshirani 1996),
ElasticNet (Zou and Hastie 2004) **3-Dantzig** (Candès and Tao 2007)

+ Meta-analysis

Score-based BayesNet learning

- Bayesian Network on discrete random variables
 - Directed Acyclic Graph G
 (in)dependencies between variables
 - Conditional probability distribution $P_G(X_i / Pa_i)$ $P_G(X) = \prod P_G(X_i / Pa_i)$
- Find the graph $G_{best} = argmax_G P(G/D)$ with dataset $P(G/D) \propto P(D/G)P(G)$
 - P(D/G) marginal likelihood of the graph Bayesian Dirichlet score (BDeu) with equivalent sample size α = 1(A1), 2(A2), 5(A3)
 - > P(G) prior probability of the graph with uniform prior on the number of parents (Chen 2008) $\gamma = 0.5$

Restricted DAG search space

→ Genetic linkage between markers (Carthagene mapping software (Givry et al. 2006))

 \rightarrow Cis-effect: mutation in promoter region of gene *i* (example: M_1 and M_3)

- Enforce arc $M_i \rightarrow E_i$
- Forbid arcs $M_i \rightarrow E_j \qquad \forall j \neq i$

 \rightarrow Trans-effect: mutation in coding region of gene *i* (example: M_2)

• Forbid arc $M_i \rightarrow E_i$

Sparse candidate greedy search (Friedman et al. 1999)

- Sparse list of candidate parents per E_i
 - Test one parent (gene-expression or marker) versus no parent $P_{BIC}(E_i | X_j) > P_{BIC}(E_i) \quad \forall X_j \in \{E_j, M_j\}$
 - Select at most one best marker inside a sliding window (50 cM) along the chromosomes.
- Maximum number of parents \leq 7 (observed was 4)
- Start with an *empty* DAG, greedy algorithm: insert/reverse/delete edges
- Edge weight: *influence score (Yu et al. 2002)*

2&3-Regression model

Gene-by-gene linear regressions. For gene *i*:

$$E_i = \mathbf{E}.\boldsymbol{\beta}_i + \mathbf{M}.\boldsymbol{\theta}_i + \boldsymbol{\varepsilon}_i,$$

- E: gene expression levels (n*p matrix)
- M: genotypes (n*p matrix)
- β_i : effects of expression levels on y_i (p-vector, $\beta_{ii}=0$)
- θ_i : effects of markers on y_i (p-vector)
- ε_i: Gaussian residual error term.

The network structure is *encoded in non-zero entries of matrices* β *and* θ that need estimation.

2-Lasso regression

(Tibshirani, 1996)

Gene *i*:
$$\min \left\| \mathbf{E} - \mathbf{E} \cdot \boldsymbol{\beta} - \mathbf{M} \cdot \boldsymbol{\theta} \right\|_{\ell^2} + \lambda \left\| (\boldsymbol{\beta}, \boldsymbol{\theta}) \right\|_{\ell_1}$$

Estimates β^{λ} , θ^{λ} for given λ (repeated for 20 different values $\lambda_{max}/20$ to λ_{max}

- Solved with LAR (Efron et al. 2003) algorithm. No model selection (BIC, cross validation, Meinshausen and Bühlman 2006...), rather a consensus.
- Post-proc: cis-effect enforces θ_{ij} to 0 for $j \neq i$ in range [i-F,i+F].
- Edges that have no causal basis are symetrized. Causality is inferred from θ .
- Reliability of i→j is the ratio of occurence on λ grid. Halved for undirected edges.

3-The Dantzig selector

(Candès and Tao, 2007)

Gene
$$i \qquad \min \left\| (\beta_i, \theta_i) \right\|_{\ell_1}$$

s.t. $\left\| [\mathbf{E}_{\setminus i}, \mathbf{M}]^* r_i \right\|_{\ell_\infty} \leq \delta$ where r_i is the residual vector
(bounded residual/variables correlations)
Estimates $\beta_{ij}^{\delta}, \theta_{ij}^{\delta}$ for bound δ

- Reduces to linear programming
- Solved for 20 evenly spaced values of $\delta \in [0, \delta_{\max}]$ where δ_{\max} : minimum δ that leads to an empty network.
- Postprocessing as in LASSO.

1+2+3 = Meta analysis

$$\mathfrak{M} = \{Lasso, Dantzig, BayesNet\}$$

$$r_{ij}^{meta} = 1 - \exp\left(\sum_{m \in \mathfrak{M}} \log(1 - r_{ij}^{m})\right)$$

 r_{ij}^{m} : reliability of edge i \rightarrow j for method m

~ Fisher's inverse χ^2 method

(Hedge and Olkin 1985)

Calibration of the reliabilities between methods: No change for Dantzig and BayesNet Reliabilities for Lasso set between 0 and ½

Implementation details and CPU times

- BayesNet: Greedy Search using Banjo (*Hartemink 2005*)
 A1: ~ 20'
 A2: ~ 70'
 A3: ~ 180'
- Lasso: R scripts based on glmnet package
 A1: ~ 10'
 A2: ~ 20'
 A3: ~ 60'
- Dantzig: glpk linear programming solver
 A1: ~ 300'
 A2: ~ 1300'
 A3: ~ 6600'
- Meta: few R code lines runs in a few seconds

Acknowledgements:

Lasso and Dantzig ran on GenoToul and GenoOuest bioinformatic platforms.

Results

	Sample size 100		Sample size 300		Sample size 999	
	rang	score	rang	score	rang	score
Meta	1	81.87	1	89.40	1	140.56
Dantzig	3	78.64	2	87.92	2	135.91
BayesNet	13	0.00	12	0.00	8	3.52
Lasso	*		*		*	

Lasso had errors in edge direction, reliability calibrated accordingly

Venn diagram for the first 1,000 edges

Precision vs Recall curves (left: old, right: new)

Conclusions & Prospects

- Genetical genomics data: potential for causal inference in gene regulatory networks.
- Accuracy increases with sample size. Seems to decreases a wee bit with average degree.
- Results in terms of absolute Precision/Recall (slightlty) disappointing.
- Check results according to data/network features.
- Elastic Net procedure to clean out.
- Application on real genuine datasets (FRAGENOMICS ANR research project)

References

- * **Chickering**. Efficient Approximations for the Marginal Likelihood of Incomplete Data Given a Bayesian Network. AI 1997.
- * **Chen**. *Extended bayesian information criteria for model selection with large model spaces*. Biometrika 95(3), 2008.
- **Candès and Tao.** *The Dantzig selector: statistical estimation when p is much larger than n.* Ann. Stat., 2007.
- **Darwiche**. *Modeling and Reasoning with Bayesian Networks*. Cambridge University Press, 2009.
- * Efron, Hastie, Johnstone, and Tibshirani. Least Angle Regression. Ann. Stat., 2004.
- **Friedman, Linial, Nachman, Pe'er**. Using bayesian networks to analyse expression data. J. Comp. Biol., 2000.
- * Friedman, Nachman, Pe'er. Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. In Proc. of UAI, 1999.
- **Givry, Bouchez, Chabrier, Milan, Schiex**. *Carthagene: multipopulation integrated genetic and radiated hybrid mapping*. Bioinformatics, 2005.
- * Hartemink. Reverse engineering gene regulatory networks. Nature Biotechnology, 2005.
- Jansen, Nap. Genetical genomics : the added value from segregation. Trends in Genetics, 2001.
- Meinshausen and Bühlmann. High dimensional graphs and variable selection with the lasso. Ann. Stat., 2006.
- * Liu, Fuente, Hoeschele. Gene network inference via structural equation modeling in genetical genomics experiments. Genetics 178, 2008.
- **Tibshirani.** *Regression shrinkage and selection via the lasso.* J. Royal. Statist. Soc B., 1996.
- * Vandel, Mangin, Vignes, Givry. Extended Bayesian scores for reconstructing gene regulatory networks. ECCS workshop on graphical models for reasoning on biological systems, 2010.
- * Yu, Smith, Wang, Hartemink, Jarvis. Using bayesian network inference algorithms to recover molecular genetic regulatory networks. In Int. Conf. on Sys. Biol., 2002.
- * **Zhu, Wiener, Zhang, Fridman, Minch, Lum, Sachs, Schadt**. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLOS Comp. Bio. 3(4), 2007.
- **Zou and Hastie**. *Regularization and variable selection via the elastic net*. J. Royal. Statist. Soc B., 2005.